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The aim of this course is to introduce you to the concepts of developing 
electronic systems using microcontrollers.  
 
In doing so, it offers substantial coverage of Unit 6 of the BTEC Level 3 National 
Extended Diploma in Engineering  (the precise mapping of the course to this 
unit is given on page 9). 
 

On completing this course you will have learned:  
 • what a microcontroller is. 
 • how to construct circuits and systems based on microcontrollers. 
 • how to program microcontrollers. 

  Section:   Introduction 
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Before you start 

This course is an introduction to microcontroller programming. 

To get the full use out of this course we recommend you have the following: 

Flowcode 

Flowcode is a software program which allows users to quickly and easily develop complex 

electronic systems in a simple manner, it works with a range of microcontrollers, including 

Microchip’s ‘PIC’ microcontrollers (PIC MCUs), Arduino, and ARM. Flowcode itself is 
microcontroller neutral - it presents virtually the same user interface regardless of the 

microcontroller used. The differences are in the hardware and the way the program is 
downloaded and tested. 

Hardware 

It is always more rewarding when learning about microcontroller programming to see the 
programs execute on actual hardware, therefore we recommend that you have some hardware 

available to send and execute your created programs onto. 

 

This course is mainly designed around the Matrix E-blocks2 hardware platform, typically the 
BL0011 programmer and the BL0114 Combo board, although separate E-blocks (LCD, switches, 

LEDs, etc) can also be used. 

 

 

 

 

 

 

 

 

While most of the course is designed around the E-blocks2, we also recognise that some people 

may be using either an Arduino or Eblocks1 devices. So in this course, whenever there is change in 
the instructions for Eblocks1 or Arduino changes, they will be displayed in the following colours: 

 

Arduino users need an Arduino Uno and E-blocks Arduino Uno Shield (BL0055), as well as the 
Combo board. 

 

E-blocks1 users will need the EB006v9 Multiprogrammer and the EB083 Combo board plus 
connecting wires. 

     Introduction                                                                       

BL0114 Combo board. 

BL0011 programmer. 
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Getting more Information 
 
 Flowcode 
 https://www.flowcode.co.uk 
 
 From here you can access: 
  - Flowcode—Getting Started Guide 
  - Flowcode Wiki 
  - A wide range of Flowcode examples 
 
 
 E-blocks 
 https://www.matrixtsl.com/eblocks/resources  
  
 In the E-blocks section you can get the follow resources: 
  - E-blocks USB Drivers 
  - E-blocks example files 
  - E-blocks User Guide 
 
 https://www.matrixtsl.com/eblocks/boards 
 
 From the boards pages: 
  - Specific datasheets for the boards 
  - Specific board examples 
 
 
 Other Help 
 https://www.flowcode.co.uk/forums/ 
 
 The Matrix forum provides an in-depth community of well established, long-term users of 

Flowcode and new Flowcode users sharing ideas and solving problems and issues encountered 
whilst using the software. 

 
 https://www.matrixtsl.com/learning/ 
 
 The Matrix ‘Learning Centre’ contains many different resources including articles, drivers, 

curriculum. 

     Introduction                                                                       
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Course Conventions 
The following abbreviations are used in the course: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The following conventions are used: 
 • Matrix products are capitalised on the first word. 

For example:  Multiprogrammer  Prototype board   Flowcode 
 • Flowcode menu instructions are presented as: 

 File > Open  
 • Abbreviations are spelled out in full the first time they are mentioned: 

 EPROM (Erasable Programmable Read Only Memory)  
 • European circuit symbols are used throughout the course. 

Abbreviation Meaning 
ADC Analogue to Digital Converter 
ALU Arithmetic Logic Unit 
ASCII American Standard Code for Information Interchange 
CPU Central Processing Unit 
EEPROM Electrically Erasable Programmable Read Only Memory 
EPROM Erasable Programmable Read Only Memory 
GND ground 
Hex hexadecimal 
IDC Insulation Displacement Connector 
I/O Input / Output 
ISP In-System Programming 
JPEG Joint Picture Expert Group (standard for images) 
LCD Liquid Crystal Display 
LED Light Emitting Diode 
LVP Low Voltage Programming 
LDR Light Dependent Resistor 
LSB Least Significant Bit 
MSB Most Significant Bit 
NVRAM Non-Volatile Random Access Memory 
PIC Peripheral Interface Controller 
PROM Programmable Read Only Memory 
PSU Power Supply Unit 
RAM Random Access Memory 
RV1 Resistor-Variable 1 
SPI Serial Programmable Interface 
XTAL crystal 
ZIF Zero Insertion Force 
+V positive supply voltage 

     Introduction                                                                       
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The hardware: 
Most exercises use the BL0011 / BL0080 Multiprogrammer and BL0114 Combo board. 
 
Most of the exercises can also be completed using the Arduino Uno Shield (BL0055).  However, 
these require different PORT settings. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hardware and software settings used to test most programs: 
 
Hardware jumper settings: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowcode and download settings: 

 
 
 

 
 
 
 
 

BL0011 / BL0080 Jumper settings 

Microchip PIC MCU 16F18877   

Target voltage 5V J15 

Voltage source PSU J11 

Programming Source USB J12,13,14: USB 

Oscillator Selector OSC J18,19 

Port A E-block E-blocks Combo board 

BL0114 

  

Port B E-block   

Port C E-block     

Port D E-block     

Port E E-block     

Menu Name Setting E-blocks 1 

Build > Project Options... > Choose a Target Family - PIC 16F18877 16F1937 

Build > Project Options... > General Options 
Clock speed (Hz) 32 000 000 19 660 800 

Simulation speed Normal Normal 

Build > Project Options... > Configure 
Oscillator HS Oscillator HS Oscillator 

Watchdog Timer Enable bit Disabled Disabled 

     Introduction                                                                       
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01 Send different 8-bit codes to ports of the 
microcontroller. 

02 Change the logic level of a one single pin. 
03 Configure an output icon. 
04 Use binary code. 
05 Manipulate logic output levels. 
06 Use LED’s to display an output. 
07 Compile a program to the PIC MCU. 
08 Add a delay to slow down execution  
       of a program. 
09 Change the delay interval. 
10 Configure a delay icon. 
11 Control the speed of a microcontroller. 
12 Use an oscilloscope to time events. 
13 Use Connection Points to introduce  
       unconditional branching in a program. 
14 Introduce PWM as a means of controlling the 

brightness of LEDs. 
15 Create an infinite loop. 
16 Manipulate logic output levels. 
17 Use LEDs to display an output. 
18 Create and use a variable. 
19 Configure a calculation icon to perform  
       arithmetic and logic calculations. 
20 Create and manipulate variables. 
21 Perform calculations. 
22 Use LEDs with current limiting resistors. 
23 Create and use a ‘running light’ program,  
       using the ‘multiply-by-two’ method. 
24 Create and use a ‘running light’ program,  
       using the ‘shift-right’ method. 
25 Create and populate an array. 
26 Create a conditional loop. 
27 Input data from switches. 
28 Use loops to create LED sequences. 
29 Configure an input icon. 
30 Configure decision icons and hence add 

conditional branching to a program. 

31 Control the frequency at which LEDs flash. 
32 Use LEDs to display output logic levels. 
33 Use temporary memory. 
34 Create, populate and manipulate string variables. 
35 Control the display of text and numbers on a LCD. 
36 Use a LCD as an output device for the PIC MCU. 
37 Configure a Component macro for the LCD. 
38 Input text and numbers from a keypad and 

display messages on the LCD. 
39 Use ASCII code to transmit this data. 
40 Use multiplexed inputs. 
41 Configure a Component macro for the keypad. 
42 Create data loggers, using 8-bit and 10-bit data 

from the ADC. 
43 Configure an analogue input. 
44 Enter data via switches. 
45 Enter information from light and  
       temperature sensors. 
46 Configure and use the EEPROM. 
47 Scroll through EEPROM data. 
48 display text and numerical data on the LCD. 
49 Use the E-blocks prototype board. 
50 Use software macros to simplify the  
       structure of a program. 
51 Create software macros. 
52 Use closed loop control. 
53 Use PWM to control the brightness of LEDs. 
54 Create and use ‘single-pin’ interrupts. 
55 Create and use ‘interrupt-on-change’  
       (IOC) interrupts. 
56 Use real time operation of a PIC MCU. 
57 Create and use timer interrupts. 
58 Use the prescaler to create accurate  
       time intervals. 
59 Trigger the timer using the crystal or an  
        external event. 

 
 
After completing this course, you will be able to: 

     Introduction                                                              Objectives                                       

(Mapping  to Unit 6 of the BTEC Level 3 National Extended Diploma in Engineering is given on page 9). 
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     Mapping to BTEC Level 3 National Extended Diploma in Engineering                                              Unit 6  

A Investigate typical microcontroller system hardware Covered? 
    

A1 Control hardware   
I/O capabilities – number, type (analogue/digital), ports  
hardware specification – bus width, processor speed  
memory – RAM, ROM  
hardware features - interrupts, PWM  
   - stack  
required peripherals  
cost and accessibility  
ease of use  
software and programming language  
operating voltages and power requirements  
    
A2 Input devices   
User input:   
  digital – switches and buttons  
  analogue – control potentiometer  
Temperature   
  temperature sensors  
  environmental sensor – temperature and humidity  
Light   
  light-dependent resistor (LDR)  
  IR – phototransistor, photodiode or IR receiver  
Movement/orientation   
  tilt switch  
Presence   
  micro-switch  
  ultrasonic  
Input interfacing requirements   
  signal conditioning  
  analogue-to-digital (ADC) conversion  
  modular sensor boards  
  PWM  
  serial communications  
  Inter-Integrated Circuit (I2C)  
    
A3 Output devices   
Optoelectronic   
  light-emitting diode (LED) – indicator and IR  
  7-segment display  
  liquid crystal display (LCD)  
Electromechanical   
  relay  
  direct current motor  
  servo  
Audio   
  buzzer or siren  
  speaker or piezo transducer  
Output interfacing requirements   
  power requirements and drivers  
  transistor output stage  
  relay  
  PWM  
  serial communications  
  I2C device interfacing  
    

A4 Selecting hardware devices and system design   
    
A5 Assembling and operating a microcontroller system   
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     Mapping to BTEC Level 3 National Extended Diploma in Engineering                                              Unit 6  

B Programming Techniques and Coding   

    
B1 Programming techniques   
Use of a programming development environment   
  software operation  
  connecting to microcontroller hardware  
  creating and managing program files  
  syntax/error checking  
  simulation  
  compiling, downloading and live testing  
  monitoring/debugging  
  safe use of computer and display  
Coding practices:   
  device set-up and program initiation   
    introductory comments  
    chip set-up  
    pin modes  
    Libraries  
    Declarations  

    efficient/effective code authoring  
    code syntax  
    in-line commenting  
    code organisation and structure  

    
B2 Coding constructs   

Input/output   

  digital – bit and port level read/write  
  analogue read/write, resolution, calibration  
  tone and sound generation  
  pulse and PWM  
  communication, including serial and I2C  
Program flow and control:   

  calling libraries  
  subroutines and functions  
  control structure sequence iteration 

– if, else, switch, case, for, do, while, until and end 
 

  
  delays and timing  
  Interrupts  
Logic and arithmetic   
  variables – data types (Boolean, 

character, byte, integer, word, float, long, double, string) 
 

  
  arrays  
  comparative operators: 

   =,    not =,    <,    >,    < or =,    > or =. 
 

  
  Boolean operators – AND, OR, NOT  
  logic using input condition 

– digital and analogue 
 

  
  arithmetic operations  

    

B3 Structured program design   

pseudo code  
flowchart  
decision table  

    

B3 Number systems   
bits, bytes  

parallel and serial  
binary to decimal conversion  
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     Mapping to BTEC Level 3 National Extended Diploma in Engineering                                              Unit 6     

Key 

 

C System development cycle Project 
    
C1 Development processes Project 

Stages of the development process.   
    
C2 Documentation Project 

A portfolio of evidence produced 
throughout the development process. 

  
  

    

Symbol Meaning 
 Content covered by the course 
 Content partly covered by the course 
 Content not covered by the course 

Project Content addressed through project work 
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     Section 1:    Introduction to 

                 Microcontrollers 

      

 

Microcontrollers are tiny devices used to control other electronic devices. 
They are found in a huge range of products. In automotive  systems they can be 
found in engines, anti-lock brakes and climate control systems. In domestic
electronics they can be found in TVs, VCRs, digital cameras, mobile phones, printers, 
microwave ovens, dishwashers and washing machines. 
 
A microcontroller is a digital integrated circuit, consisting of a central processing 
unit, a memory, input ports and output ports. 
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     Introduction to Microcontrollers                                                                                                        Section 1 
 

Microcontrollers 
 

At their heart (or is it brain?) there is a Central Processing Unit (CPU). This processes the digital 
signals, does calculations and logic operations, creates time delays, and sets up sequences of 
signals. 

How does it know what to do? It is following a program of instructions, stored in Section of the 
memory, called the program memory, inside the microcontroller.  

From time to time, the CPU needs to store data, and then later retrieve it. It uses a different area 
of memory, called the data memory to do this.  

The clock synchronises the activities of the CPU. It sends a stream of voltage pulses into the CPU 
that controls when data is moved around the system and when the instructions in the program 
are carried out. The faster the clock, the quicker the microcontroller runs through the program. 
Typically, the clock will run at a frequency of 20MHz (twenty million voltage pulses every second). 

 

 

 

 

 

 

 

 

 

 

 

 

 

To talk to the outside world, the microcontroller has ports that input or output data in the form of 
binary numbers. Each port has a number of connections (often referred to as bits). An 8-bit port 
handles an 8-bit (or one byte) number. 

Information from sensors is fed into the system through the input port(s). The microcontroller 
processes this data and uses it to control devices that are connected to the output port(s). The 
ports themselves are complex electronic circuits, not simply a bunch of terminals to hang 
components on.  
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     Introduction to Microcontrollors                                                                                                        Section 1  
 

Microcontrollers—PIC and AVR 

The name PIC refers to a popular group of microcontrollers, 
produced by Arizona Microchip. AVR is another group of 
microcontrollers, also made by Microchip. The microcontroller 
on an Arduino board is actually an AVR chip. 

When we use a microcontroller, we have to specify how we 
want the ports to behave. The ports are bi-directional, 
meaning that they can act as either input ports or output 
ports. When we write a program for a microcontroller, we start by configuring the ports, telling 
them whether they are to behave as input ports or output ports.  

The input port can receive data (information) in one of two forms, as an analogue signal, or as a 
digital signal. It is important that we understand clearly the difference between these.  

 
The Digital World 

Much of our everyday information is described in numerical format.  
For example:  
 • "It is 2 o'clock." 
 • "The temperature outside is 21 degrees C." 
 • "The car was travelling at 48 kilometres per hour." 

It is easy to understand data in this form. 
 
For example, the table shows how the speed of a car changes over a period of time.   

 
 
 
 
 

However, you might wonder what 
happened at time 35 seconds. 
Was the car moving faster or slower 
than 25 km/h at that moment?  
 

 
The Analogue World 

Now the information is given in the form of an analogy.  
In other words, we use something that behaves in a similar way.  
For example:  
1.   The hour glass egg timer:  

The greater the time elapsed, the deeper the sand in the bottom of the egg timer.  
2.   The mercury-in-glass thermometer  

The hotter it gets, the further the mercury moves up the tube.  
3.   The car speedometer  

The higher the speed, the further the pointer moves around the dial. 

The problem with analogue data is that you have to do some work to extract it. 
For the speedometer, and thermometer, you have to work out where the pointer sits on the scale.  
On the other hand, it is easy to judge how the temperature of a body or speed of a car is changing. 
We see the mercury moving along the tube or the pointer moving around the dial.  

Time in seconds Speed in kilometres per hour 

0 0 

10 15 

20 21 

30 25 

40 22 

50 20 

60 16 
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     Introduction to Microcontrollors                                                                                                        Section 1  
 

Analogue Data 
Many electronic sensors provide signals in analogue form. For example, a 
microphone provides an electrical 'copy' of a sound wave.  

Another - the temperature sensor. 

Here is the circuit diagram for one type of temperature sensor.  

The output voltage increases when the temperature increases. 

It is an analogue signal because the voltage copies the behaviour 

of the temperature.  

An electrical analogue signal can have any voltage value, 
limited only by the power supply used. 

In this case, the output of the temperature sensor could, 
in theory, go as high as 5V, or as low as 0V.  

Over a period of time, the output voltage could change as 
shown in the diagram. This is an analogue signal.  

 

Digital Data 
A digital signal carries its information in the form of a number. Electronic systems usually employ 
the binary number system, which uses only the numbers ‘0’ and ‘1’, coded as voltages.  We could 
decide on the following code: ‘0’ = 0V, ‘1’ = 5V, for example.  

Digital signals, then, have only two possible voltage values, usually the 
power supply voltage, or as close to it as the system can get, and 0V.  

How can we enter these numbers into an electronic system? 

One (very slow) way would be to use a switch (an example of a digital 
sensor). The circuit diagram shows such a digital sensor.  
 

 • When the switch is open (not pressed), the output is 'pulled down' to 0V by the resistor. 
This output could represent the binary number '0'. 

 • With the switch closed (pressed), the output is connected to the positive supply, 5V in this case. 
This could represent the binary number 1. 

 

(Note - if the positions of the switch and resistor were reversed, pressing the switch would put a 
logic 0 signal on the pin etc.) 
The following diagram shows a more complex digital signal.  
 
 
 
 
 
 
 
 
 
The nine bit binary number represented by the signal is given under the waveform.  



Copyright © 2016-21 Matrix Technology Solutions Limited www.matrixtsl.com 

  

 16 

     Introduction to Microcontrollors                                                                                                        Section 1  
 

Analogue to Digital Conversion 
Much of our 'real world' data is analogue, but computers (including microcontrollers), only process 
digital data. Fortunately microcontrollers often contain a subsystem that can convert information 
from analogue format to digital format. This is called an Analogue-to-Digital Converter (usually 
shortened to 'ADC' or 'A/D').  
The ADC inside a microcontroller divides the range of possible analogue voltages into equal steps. 
The lowest step is given the number ‘0’, and the highest step is given the highest number that the 
A/D converter can handle. 
This highest number is determined by the resolution of the ADC, which, in turn, depends on 
number of bits the internal circuitry of the ADC can handle. Typical resolution of microcontroller 
ADCs is 8, 10 or 12 bit.  
 
For example, if the biggest analogue voltage is 5V, and a microcontroller has an 8-bit ADC:  
 • the highest 8-bit number is 1111 1111 (= 255 in decimal). 
 • the first step is 0000 0000 (= 0 in decimal). 
 • meaning that there are 256 voltage levels. 
 •  so stepping from one level to the next involves a voltage jump of 5V/256, or about 20mV. 

 
When this microcontroller processes an analogue signal, it first divides it by 20mV, to find out how 
many steps the signal includes. This gives the digital equivalent of the analogue signal.  
The next graph illustrates this process.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In our example, the converter outputs 0000 0000 for any analogue signal up to 20mV, outputs 
0000 0001 for analogue signals between 20 and 40mV, and so on. The analogue signal shown in 
the graph produces an output of 0000 0011.  
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     Introduction to Microcontrollors                                                                                                        Section 1  
 

Inputting data into a Microcontroller 
A microcontroller is a digital device, but data can be entered in both analogue and digital forms. 
Programmers choose whether pins on the microcontroller are used as analogue inputs, digital in-
puts or digital outputs.  This flexibility leads to complex labelling.  
 
The diagram shows the pinout for a typical 
40pin PIC microcontroller, in this case it is 
the 16F1937 chip. It has five ports, known 
as A, B, C, D and E. The pins on port A are 
labelled RA0 to RA7; pins on port B are la-
belled RB0 to RB7 etc. Ports A, B, C and D 
have eight pins but port E has only four. 
For example, up to eight digital sensors can 
be connected to port A of the 16F1937. 
Pin 2 is marked as 'RA0/AN0', meaning 
that it can be used as bit 0 of port A 
(Register A bit 0) or as ANalogue input 0. 
 
The function of each input / output pin is 
determined by setting the contents of in-
ternal registers, called 'data-direction' reg-
isters inside the microcontroller.  
Pins RA6 and RA7 are also labelled as ‘OSC1’ and ‘OSC2’. They can be connected to an external os-
cillator circuit or be used for digital input /output.  
 
Analogue sensors must be attached to the pins labelled with an 'ANx' (ANalogue) label. These, 
found on ports A, B and E, can handle analogue signals between VDD (5V) and VSS (Gnd).  
Most pins have alternative functions. For example pin 25 is labelled as 'RC6/TX/CK', meaning that it 
can be Register C bit 6, or the transmit (TX) pin of the internal serial interface, or the ClocK pin of 
the internal serial interface.  
 
Fortunately Flowcode takes care of the internal settings that dictate pin functionality for you. 

Outputting data 
The microcontroller is a digital device - we have said that several times already. It outputs a digital 
signal. In most cases, we use this to turn something on and off - '0' = 'off' and '1' = '0n'. 
 
For example: 
Suppose that we set up port B as the output port (or let Flowcode do it for us). There are eight pins 
on port B, so we can switch eight devices on and off. It is important to plan how we connect these 
devices, as otherwise they might work the opposite way round. 
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     Introduction to Microcontrollors                                                                                                        Section 1  
 
The diagram shows eight LEDs connected to port B of a 
PIC16F84 microcontroller: 
 • The four red LEDs are connected between the 

positive supply rail and the port B pins. 
 For these LEDs, the microcontroller is sinking current.  

 • The four green LEDs are connected between the pins 
and the 0V rail. 
For these, the microcontroller is sourcing current.  

Each red LED lights up when its pin is at a low voltage, 
outputting '0' in other words.  
Each green LED lights when its pin is at a high voltage, outputting a '1'.  
(There are limits as to how much current the ports can control. Typically, one output pin can 
manage up to 25mA. This is enough to drive LEDs and buzzers directly, but higher-powered devices 
will need additional circuitry to interface with the microcontroller -dealt with later. However, the 
maximum current for the whole port is around 100mA, so not all pins can output 25mA at the 
same time). 

Current Limits 
As you have seen, Flowcode has a simulation mode that allows you to attach LEDs to show the 
status of the pins on the microcontroller when they are used as outputs. The LED simulation 
function inside Flowcode can be set so current is sourced or sinked (look for "polarity" properties 
of components which can be "active high" or "active low"), but typically this workbook assumes 
that current is sourced from the PIC MCU - like the green LEDs in the diagram above.  

At some stage, you will need to use the microcontroller pin specifications in order to use them as 
digital inputs, analogue inputs, or as digital outputs. In particular, there are limitations on the 
output capabilities of the device. Exceeding these limits, even for a short time, may cause 
permanent damage to the microcontroller.  
Fortunately the E-block boards used on this 
course all have current limiting resistors which 
protect the microcontrollers. When using the 
prototype or patch boards, however, there is 
no such protection and care must be taken 
not to damage your device.  

Storing Data 

Electronic sub-systems that store data are known as 
'memory'. They can store only digital data.  
One item of data is stored in one location in the memory. This 
data could be the correct combination to disarm a burglar 
alarm, or the target temperature of a car engine block.  
Each memory location has a unique address, a number used 
to identify the particular location. This means that we can 
draw up a map of the memory, showing what data is held in 
each location (the decimal version of the address is included 
to make the table easier to read). 

Address 
Data stored 

In decimal In binary 

0 000 11101001 

1 001 00100101 

2 010 10000101 

3 011 11001101 

4 100 01110100 

5 101 00011011 

6 110 11110011 

7 111 10000101 

Maximum current sunk/sourced by any I/O pin 25mA 

Maximum current sunk by all ports 200mA 

Maximum current sourced by all ports 140mA 

Maximum current out of VSS (Gnd) pin 95mA 

Maximum current into VDD (5V) pin 70mA 
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     Introduction to Microcontrollors                                                                                                        Section 1  
 
Electronic systems only understand binary numbers. This very small memory has eight locations 
(notice that numbering normally starts at 0).  It needs a 3-bit binary number to create unique 
addresses for each location. We can store items of data that are eight bits long (one byte - 1B). 
Our example memory could be called a 8 x 1B memory. Memory systems used in computers are 
much larger. Data is often stored as 32 bit numbers, allowing the use of much larger numbers. 
There are many more locations, too. A typical computer memory now has millions of memory 
locations.  

Types of Memory 
There are several types of electronic memory, each with a slightly different job to do. 
We can divide them into two main groups, ROM and RAM.  

Read Only Memory (ROM) 
These devices are normally only read (i.e. the contents are accessed but not changed / written,) 
during the running of a program.  
 • The contents are not volatile (the data remains stored even when the power supply is switched 

off). 
 • They are often used to store the basic programs, known as operating systems, needed by 

computers. 
 • The group includes: 

 • PROM (Programmable Read Only Memory) 
 • EPROM (Erasable Programmable Read Only Memory) 
 • EEPROM (Electrically Erasable Programmable Read Only Memory) 

A PROM is a one-shot device, which arrives blank, ready to receive data. Data can then be 'burned' 
into it, but only once. After that it behaves like a ROM chip that can be read many times but not 
altered. 
With an EPROM, shining ultraviolet light through a window in the top of the chip erases the 
contents. New data can then be 'burned' into the memory. Some older microcontrollers operate in 
this way.  
The EEPROM devices work in a similar way to an EPROM, except that the contents are erased by 
sending in a special sequence of electrical signals to selected pins. Flash memory is a form of 
EEPROM, widely used as the storage medium in digital cameras (the memory stick) and in home 
video games consoles.  

 

Random Access Memory (RAM) 
 • RAM allows both read and write operations during the running of a program. 
 • The contents are volatile and disappear as soon as the power supply is removed. 

(The exception is NVRAM, Non-Volatile RAM, where the memory device may include a battery 
to retain the contents, or may include an EEPROM chip as Section of the memory to store the 
contents during power loss). 

 • They are often used for the temporary storage of data or application programs. 
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Introduction to Microcontrollors                                                                                                        Section 1  
 

Microcontroller Memory 
Microcontrollers have three separate areas of memory: 

 • program memory (Flash) 
 • user variable memory (RAM) 
 • EEPROM 

The names give strong hints as to the purpose of the areas. 
For the eighteen pin PIC16F84 the graphic illustrates the 
organisation of the memory.  

 

Program memory is used to store the program. 
In most microcontrollers, such as the 16F1937, this uses 
Flash technology, meaning that it can be programmed and 
cleared many times. Older PIC MCUs use PROM for the 
program memory so that many of these can be 
programmed only once.  

 

Data memory is used to store data. 
Section of this uses RAM and Section uses EEPROM.  
The EEPROM allows us to preserve important data 
even if the power supply to the system is switched off. 
For example, suppose that the microcontroller is used as a temperature controller that keeps an 
incubator at a set temperature. It might make sense to store the target temperature value in 
EEPROM so that we do not have to enter it into the system every time we switch the incubator on.  
 

Programming 
Microcontrollers are programmable devices. They do exactly what they are told to do by the 
program, and nothing else. A program is a list of instructions, along with any data needed to carry 
them out. 
The only thing microprocessors understand is numbers. There's a problem because we don't speak 
in numbers, and they don't understand English.  
There are two solutions, and both need some form of translator: 
 • Write the program in English, or something close to it, and then have the result translated into 

numbers. 
 • We can think through the program design in English and then translate it ourselves into a 

language that is similar to numbers, known as assembler. From there, it is a swift and simple 
step to convert into the numerical code that the microcontroller understands. 

These two extremes are known as programming in a high-level language (something close to 
English) or in a low-level language (assembler).  
The first is usually quicker and easier for the programmer, but takes longer to run the program, 
because of the need to translate it for the microcontroller. 
The second is much slower for the programmer, but ends up running very quickly on the 
microcontroller.  
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The Flowcode Process 
Flowcode offers an easy way to program microcontrollers, as you will see. Once the flowchart is 
designed on-screen, one press of a button causes the software to translate it into numerical code. 
Flowcode passes the program through a number of processes before it gets sent into the 
microcontroller. The flowchart is processed: 
 
 • first into C code,  
 • then into Assembler,  
 • and finally into hexadecimal numbers or 'Hex', which the microcontroller 'understands'. 

 
The Hex code is then sent into the microcontroller, using a subsidiary program called 'Mloader'. 
When you select Build > Project Options... Configure from the Flowcode menu, you can control a 
number of options and configurations by setting the value of registers inside the device when you 
download a program.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Hex code is 'burned' into the microcontroller program memory. Since Flash memory is used to 
form the program memory, the program is not lost when the microcontroller is removed from the 
programmer. This allows you to use it in a circuit. Equally, use of Flash memory means that you can 
reuse the microcontroller and overwrite the program memory with a new program.  

 

Running the Program 
As soon as the microcontroller is powered up and is supplied with clock pulses, it will start to run 
whatever program is stored in program memory (Flash).  
When you press the reset button on the microcontroller programming board, the program restarts 
from the beginning.  
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During programming the microcontroller stops while the program is being loaded. When that is 
completed, it then restarts and runs the downloaded program.  

Different types of Microcontroller 
There are a large number of microcontroller devices available, from the humble 16F84 to larger 
more complex microcontrollers such as the 40 pin 16F1937. Different microcontrollers have 
different numbers of ports, or I/O pins, analogue inputs, larger memory, or advanced serial 
communications capabilities such as RS232 or SPI bus.  

 
PIC16F18877 Architecture 

As an example we will use the 16F18877 microcontroller. It is important that you understand a 
little more about what it does and how to use it. This section details the pins that are available on 
the 16F18877 and the connectors they use on the E-blocks programmer board.  
At this point in a traditional programming course, you would be introduced in some detail to the 
various internal circuit blocks of the microcontroller. You would need this information to write 
code for the microcontroller in C or assembly code. 
No need - Flowcode takes care of these details. 
 
However, you do need to understand the input and 
output connections of the microcontroller, the 
memory available and the role of the other 
subsystems in the microcontroller.  
 
Ports - The 16F18877 has five ports, labelled ‘A’ to 
‘E’, connected to the rest of the microcontroller 
internals by an 8-bit bus system.  
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16F18877 Microcontroller  

      Layout: 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Memory 

Flash 
 • Flash memory is used to store the program you write.  
 • This program is 'compiled' by the computer to binary code and then 
downloaded into the Flash memory of the microcontroller. 

 • You can read from, and write to it and it is retained, even after a power cut.  
 • The Flash memory contained in the 16F18877 can store up to 32768 program 
commands.  

RAM 
 • Data from inputs, outputs, analogue inputs, calculations etc. is typically stored in 
‘variables’ (values in the program that alter as it runs).  RAM is where these are stored.  

 • This memory is erased every time the power gets cut or a reset occurs.  
 • It also contains system 'registers' which control and report the status of the device.  
 • The RAM memory in the 16F18877 can store up to 4096 bytes of data.  

EEPROM 
 • EEPROM is where data can be permanently stored  
 • This memory is of the PROM-type - preserved every time the power cuts or a reset 
occurs.  

 • The EEPROM of the 16F18877 can store up to 256 bytes of data.  
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ALU 

 • The ALU (Arithmetic Logic Unit) is at the heart of the microcontroller’s data processing. 
 • All data passes through this unit. 
 • The program in the Flash memory tells the ALU what to do. 
 • The ALU can send data to, and fetch data from all the separate blocks and ports in the 

microcontroller using the 8-bit wide data-bus. 
 • The ALU needs four external oscillator clock pulses to execute one whole instruction. 
 • How the ALU works is very complicated. Fortunately Flowcode programmers do not need to 

know how it works. 

Timer 1 (TMR1) 
 • This timer interrupt is used to provide the microcontroller with exact timing information. 
 • It is ‘clocked’ either by the system clock or by an external clock on pin RC0. 
 • Either clock can be divided by 1, 2, 4 or 8 by configuring the Prescaler of TMR1 in Flowcode.  

The resulting output triggers TMR1 and increments the TMR1 register. 
 • TMR1 is a 16-bit register, which ‘overflows’ when it reaches ‘65536’. 
 • At the instant it overflows, it generates an interrupt and the TMR1 register is reset to ‘0’. 
 • This TMR1 Interrupt stops the main program immediately and makes it jump to the TMR1 

macro. 
 • After this finishes, the main program continues from where it left off just before the interrupt. 

For example:  
 
 
 
 
 
 

Result: TMR1 interrupts the main program and execute the TMR1 macro 9.375 times per second.  

Timer 0 (TMR0) 
 • This timer interrupt also provides the microcontroller with exact timing information. 
 • It is ‘clocked’ either by the system clock or by an external clock on pin RA4. 
 • This system clock runs exactly four times slower than the external oscillator clock. 
 • Either clock can be divided by 1, 2, 4 or 8, 16, 32, 64, 128, or 256 by configuring the Prescaler of 

TMR0 in Flowcode.  The result triggers TMR0 and increment the TMR0 register. 
 • This TMR0 register is an 8-bit register, which overflows when it reaches 256. 
 • At the instant it overflows, it generates an interrupt and the TMR0 register is reset to 0. 
 • A TMR0 Interrupt stops the main program immediately and makes it jump to the TMR0 macro. 
 • After this finishes, the main program continues from where it left off just before the interrupt. 

For example:  
 
 
 
 
 
 

 

Result: TMR0 interrupts the main program and execute the TMR0 macro 75 times per second.  

External clock oscillator frequency (crystal oscillator) 19 660 800 Hz 

System Clock (four clock pulses per instruction) 4 915 200 Hz 

Set prescaler to ‘8’ (divides by 8) 614 400 Hz 

Overflow  frequency when TMR1 = ‘65536’ 9.375 Hz 

External clock oscillator frequency (crystal oscillator) 19 660 800 Hz 

System Clock (4 clock pulses per instruction) 4 915 200 Hz 

Set prescaler to 256 (divides by 256) 19 200 Hz 

Overflow when TMR0 = 256 75 Hz 
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RBO External Interrupt 
 • A logic level change on pin RB0 can be configured to generate an interrupt. 
 • It can be configured in Flowcode to react to a rising or to a falling edge on RB0. 
 • If set to react to a rising edge, when one occurs: 

 • it immediately stops the main program;  
 • the RB0 related macro is executed;  
 • then the main program continues from where it left off just before the interrupt.  

This happens every time a rising edge is detected at pin RB0. 

PORT B External Interrupt 
 • A logic level change on any combination of pins on port B can generate an interrupt.  
 • This can be configured to occur on a rising or a falling edge, or both.  
 • When one of these interrupts occurs:  

 • it immediately stops the main program;  
 • the port B related macro is executed;  
 • then the main program continues from where it left off just before the interrupt.  

This happens every time a level change is detected on one of the pins selected on port B.  

A/D 
 • The 16F18877 has 35 pins.  
 • It has only one 10-bit A/D converter.  
 • This implies that these fourteen analogue inputs can't all be read at the same time.  
 • A built-in analogue switch, configured in Flowcode, selects which inputs are sampled.  
 • After the sample instruction, the analogue switch points to the correct input and this is 

converted into a 10-bit binary value.  
 • In Flowcode, you can opt to use only the eight most-significant bits (MSB's) of this 10-bit value, 

by using the GetByte instruction, or to use the full ten bits by using the GetInt instruction. The 
ten bits will fill up the ten least-significant bits (LSB's) of the selected 16-bit integer variable.  

 • After this, the program can select to read another analogue input.  

Busses 
 • A PIC and AVR microcontrollers are based on a Harvard architecture.  
 • This means that there are separate busses for instructions and for data.  
 • The data bus is 8-bits wide and connects every block and port together.  
 • The instruction bus is 14-bits wide and transports instructions, which are 14-bits long, from the 

program memory to the ALU.  
 
Introduction to ‘clocks’ 

Every microcontroller needs a clock signal to operate. Internally, the clock signal controls the speed 
of operation and synchronises the operation of the various internal hardware blocks. 
In general, microcontrollers can be ‘clocked’ in several ways, using:  
 • an external crystal oscillator. 
 • ‘RC’ mode, where the clock frequency depends on an external resistor and capacitor. 
 • an internal oscillator. 

The ‘RC’ mode exists partly historical and partly for reasons of economics. It was introduced as a 
low cost alternative to a crystal oscillator. It is fine for applications that are not timing critical, but is 
not covered in this course. 
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                 E-blocks 

      

 

E-blocks are small circuit boards that can easily connect together to form an 
electronic system.  There are two kinds of E-Blocks. Upstream boards and 
Downstream boards. 
 
A variety of boards can be combined to create a full system with downstream boards 
connected to upstream boards.  
 
E-blocks are ideal companions to Flowcode software, allowing users to test and 
develop their Flowcode programs. Programs can be compiled directly to the boards, 
providing ideal development environments. 
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E-blocks consist of upstream boards and downstream boards. 

 
Upstream boards 

'Upstream' is a computing term indicating a board that controls the flow of information in a 
system. They are usually programmed in some way. 
Any device which contains 'intelligence' and can dictate the direction of flow of information on the 
bus can be thought of as an 'upstream' device. 
Examples include microcontroller boards, and Programmable Logic Device boards.  

Downstream boards 
‘Downstream’ boards are controlled by an ‘upstream’ board, but information can flow into or out 
of them.  Examples include LED boards, LCD boards, RS232 boards etc.  

 
Upstream  and downstream boards combined to form a full system, with the downstream boards 
plugging into the upstream ‘intelligent’ boards: 
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BL0011 PIC Programmer 
 • The board has five ports, labelled A to E. 
 • Ports ‘B’, ‘C’ and ‘D’ offer full 8-bit functionality. 
 • Port ‘A’ has 6-bit functionality (8-bit if the internal oscillator is selected). 
 • Port ‘E’ has 3-bit functionality. 
 • It can be powered from an external power supply, delivering 7.5V to 9V or from a USB supply.  
 • If the Reset switch is pressed, the program stored in the microcontroller will restart. 
 • The board is USB programmable via a programming chip. This takes care of communication 

between Flowcode and the microcontroller. 
 • The microcontroller executes one instruction for every four clock pulses it receives.  
 • (Note - a single instruction is NOT the same as a single Flowcode symbol, which is compiled into C 

and then into Assembly and probably results in a number of instructions). 
 • This course uses an 8MHz crystal which is multiplied up to 32Mhz internally.  
 • Switches allow the user to select a number of options.  
 • External power supply or USB power supply.  
 • Where the microcontroller uses an internal oscillator, all eight bits of port A can be used for I/O 

operation. 
 • Use of a PICKit3 tool from Microchip via ICSP header. 
 • Comes with a surface mounted PIC16F18877 device. 
 • Provides power to the downstream E-blocks boards via the port connectors. 
 • Contains the Matrix Ghost chip which allows for real time in-circuit debugging when combined 

with Flowcode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Arduino programmer overview please refer to Appendix 1, SECTION A (page 89). 
 
For E-blocks1 programmer overview please refer to Appendix 2, SECTION A (page 94). 
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BL0114 Combo Board 

The board combines together on one compact board the functionality found on a number of 
individual E-blocks boards: 

 • BL0167 LED board (x2) 
 • BL0169 LCD board 
 • BL0145 Switch board (x2) 

 • For this course, the port connectors attach to female connectors on ports A and B of the 
upstream board.  

 
 • The board provides a set of eight switches and eight LEDs for port A and the same for port B. 
 • With the main switch in the DIG position, port A is routed to its push switches (SA0 to SA7), to 

LEDs (LA0 to LA7) and to the quad 7-segment display.  
 • With the main switch in the ANA position, port A is switched to the analogue sensor section of 

the board, so that pin RA0 is connected to the on-board light sensor and pin RA1 is connected 
to the potentiometer to give a variable output voltage, (simulating the action of an analogue 
sensing subsystem).  

Note: With the switch in the ANA position, the on-board switches and LEDs LA0 and LA1 
will not operate. 
 

 • Port B I/O pins are routed to its push switches (SB0 to SB7), to the LEDs (LB0 to LB7), to the 
quad 7-segment displays and to the LCD display. 

 • The quad 7-segment display is turned on by switch ‘7SEG’. It is connected to both port A and B. 
 • Port B is used to control the LED segments and the decimal point). 
 • Port A, bits 0 to 3, select which display is activated.  

 
 • The LCD is a 20 character x 4 lines module, turned on by switch ‘LCD’. Normally a complex 

device to program, Flowcode takes care of the complexities, unseen by the user. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  For E-blocks1 combo board (EB083) overview please see Appendix 1, SECTION B (page 95). 
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Connecting E-blocks together 

E-blocks2 are built on a bus-based concept. Each E-block connects 
together with a 16 pin Har-flex connector, with the female ports 
attached to the ’intelligent’ upstream boards and the male 
connectors attached to downstream boards.  
 
The diagram shows that the first 
three pins are used to transfer the 
power to the downstream board, 
pins 4,15 and 16 are reserved.  
 
Pins 5 and 6 are connected to 
ground while pins 7-14 are the 
pins which transfer our 8 bits 
worth of data between the boards. 
 

For E-blocks1 connections please see 
Appendix 2, SECTION C (page 96). 
 
 
Using E-blocks on the bench 

You do not need a backplane to use E-blocks - you can simply 
connect them together on the bench. 
In each E-blocks package you will find a four small rubber feet to 
facilitate this. These provide a degree of protection for the E-
blocks boards and help prevent short-circuits from tinned copper 
wire and other metal objects on the bench. 
The disadvantage is that your E-blocks system is less portable as 
the connectors will be under more stress as the system is moved 
about.  

 

Protecting E-blocks circuitry 
Where possible, leaded components have been used for devices on E-blocks boards that are 
susceptible to electrical damage. This makes the task of replacing them simple should they be 
damaged. 
To protect ‘upstream’ components, all ‘downstream’ E-blocks boards include protective resistors. 
Should errors occur when declaring the nature of port pins, e.g. an input declared as an output, no 
damage will be caused. 
However there are circumstances where it is possible to cause damage:  

 • Care is needed when using screw terminal connectors and patch/prototype boards. 
 • Where possible, use protective resistors for the lines you need to connect when connecting 

two ‘upstream’ boards together with a gender changer E-block. 
 • Make sure you are earthed before handling E-blocks circuit boards  to minimise the risk of 

static damage. If you have not got an antistatic wrist band, then touch a radiator or other 
earthed metal object. 

Before making any changes to the E-blocks system, turn off the power supply.  
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Flowcode allows you to create microcontroller applications by dragging and 
dropping icons on to a flowchart to create programs. These can control external 
devices attached to the microcontroller such as LEDs, LCD displays etc.  
 

Once the flowchart has been designed, its behaviour can be simulated in Flowcode 
before the flowchart is compiled, assembled and transferred to a microcontroller. 
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Introduction to Flowcode 

This section allows those who are new to Flowcode to understand how it can be used to develop 
programs. It allows you to create programs step-by-step to learn about how Flowcode works.  
We advise that you work through every section to familiarise you with all of the options and 
features of Flowcode and introduce you to a range of programming techniques. As you work 
through each Section, please also refer to the Flowcode help file.  The main Flowcode icons are 
introduced in turn.  
 
Specifically in this section you will learn:  
 • how to use each Flowcode icon (except the C code icon). 
 • how the fundamental Components in Flowcode work - the LED, LCD, ADC, switch, 7-segment 

display, 7-segment quad display, keypad and EEPROM components. 

 

What is Flowcode 

 
The process 

1. Create a new flowchart, specifying the microcontroller that you wish to target. 
2. Drag and drop icons from the toolbar onto the flowchart and configure them to create the 

program. 
3. Add external devices by clicking on the buttons in the components toolbar. 
4. Edit their properties, including how they are connected to the microcontroller, and configure 

any macros they use. 
5. Run the simulation to check that the program behaves as expected. 
6.  Transfer the program to the microcontroller by compiling the flowchart to C, then to assembler 

code and finally to object code. 

 
Flowcode overview 

The Flowcode environment consists of: 
 • a main work area in which the flowchart windows are displayed. 
 • a number of toolbars that allow icons and components to be added to the flowchart. 
 • the System and Dashboard panels that display the attached components and provide basic 

drawing capabilities. 
 • the Project Explorer panel that shows project variables, macros and component macros. 
 • the Icon List panel that shows bookmarks, breakpoints and search results. 
 • windows that allow the status of the microcontroller to be viewed. 
 • windows that display variables and macro calls when the flowchart is being simulated. 
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Command Icons
Drag-and-drop icons from this window onto the main flowchart window to create the     

   flowchart application. Alternatively the icons are available in the Command Icons toolbar.  
   This is the first tab of the Project Explorer, here docked left, but it can be undocked.  

Components Libraries toolbar 

Connect external components to the microcontroller or use basic panel drawing 
commands. Components are grouped in different categories that appear as drop down 
menus. Click on a component and it will be added to the microcontroller and appear on 
the panel. The pin connections and properties of the component can then be edited.  

A typical screen (testing the 7 segment display)
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2D: Dashboard & 3D: System Panels 
The components that you connect to the microcontroller will be displayed on one of these panels where 
you can interact with them when running a simulation. 
 
They also provide basic drawing features 
like lines, shapes, and images, which can 
be used to build advanced professional-
looking panels. 

The Dashboard Panel is primarily for 2D   
use although it does offers a fixed 3D view. 
It is generally used as an interface showing 
the controls for interactive components.  
 
The System Panel is the main 3D panel, 
offering many more features and options: 
 • full camera control. 
 • editable background environments with default Sky Dome and World Dome views. 
 • the option to use an image as the background. 
 • Shadow mode, offering both Tabletop and Object shadow options. 

 
More details on these panels are found in the 'Flowcode - Getting Started Guide’. 

(View > 3D: System Panel)  /  (View > 2D: Dashboard Panel) 

 

Component Properties panel 

All items on the panel, including the panel itself, have associated properties 
that are displayed in the Properties pane when the item is selected. 
Some are read-only while others can be manipulated. 
Some, like size and position, change as you interact with the item. 
Others allow access to more advanced features of the selected item.  
The Properties pane typically docks to the right hand side of the screen but 
looks like this when undocked:  
(View > Component Properties) 

 

Project explorer 

The buttons along the top of this panel allow you to select Ports, Globals, 
Macros and Components.  
 • Ports - variable names assigned to the microcontroller ports. 
 • Globals- any constants and variables that have been defined 

for use in the current project.
 • Macros - user-created macros in the current program and 

allows the user to drag them into the current flowchart.
 • Component Macros -  lists components that are present in project

 (View > Project Explorer) 
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Target Device window 

The pinout for the currently selected microcontroller chip is displayed.   
When the flowchart is being simulated, the state of each 
microcontroller I/O pin is shown as red or blue, for ‘high’ or ‘low’ 
outputs respectively. 
(View > Target Device) 
 
 
 

 
 
 

 
Docking and undocking the toolbars and panes 

Toolbars and panes can be undocked from their default positions and either be left free floating, 
or docked to the top, bottom or the sides of the Flowcode window.  
 
To undock a docked toolbar, simply click and hold on the toolbar grab bars (the speckled area at 
the top or side of the toolbar) and drag the toolbar to its new position.  

 
To dock it again, double-click on the grab bar. 
 

 

Example showing floating toolbars 
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Flowchart window 

The icons that make up the flowchart are displayed in this main 
space. The text will change depending on properties selected, 
component macros called etc, The display names can be changed 
by the user to aid project organisation. 
 
A red star alongside an icon indicates that the flowchart has not 
been saved in its current form. 

 

 
 
 
 
 
 
 
 
 
 
 
Simulation 

When simulating a program in Flowcode a red 
rectangle around an icon indicates the icon to be 
executed next. 

 
 
 
 
 
Simulation debugger 

When simulating a flowchart, the 
current values of any variables used in 
the program appear in this window. 
These are updated after a command is 
simulated (unless the simulation is 
running at full speed - 'As fast as 
possible').  
 
If you press the pause button during simulation, you can click on a variable in this window to 
change its value (allowing you to test the program under known conditions).  
The window also shows the current macro being simulated under the Macro Calls section, useful 
when one macro calls another during the simulation process.  
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Please also see Section 4 Flowcode First Program Page 43 

Starting a new flowchart 
 • Create a new flowchart by selecting (File > New Project) 
 • Select the microcontroller that you wish to target from the list presented. 
 • Click the “New Embedded Project” button 

 
Opening an existing flowchart 

There are a number of ways of opening an existing Flowcode flowchart: 
 • Select the Open option from the File menu (File > Open Project)  

  or 
 • Select the file from the list of most recently used files in the File menu. 

  or 
 • Double-click on a Flowcode (.fcfx) file in Windows Explorer to launch Flowcode and open the file. 

 
Saving a Flowchart 

To save a flowchart, select either the Save or Save As options from the File menu. 
(File > Save / Save As).  
Flowcharts must be saved before they can be compiled to C or transferred to a microcontroller.  

 

Saving Flowchart Images 
To save an image of the currently active flowchart, select Save current Flowchart from the Save 
Image sub-menu in the File menu (File > Export > Save the current macro as an image).  
This function saves an image of the program to any file in the format chosen from the list:  

 • Bitmap (*.bmp) 
 • JPEG (*.jpg;*.jpeg) 
 • GIF (*.gif) 
 • PNG (*.png) 

 
Note that the current zoom rate is used to determine the resolution of the image saved. If you need 
high quality images for printing then increase the zoom rate.  
From the Save Image menu, you also have the option to save the current image of either the 
Dashboard Panel or the System Panel  
(File > Export > Save the current 2D Dashboard as an image).  

 
These images can be saved to any file format chosen from the list:  

 • Model (*.mesh) 
 • Bitmap (*.bmp) 
 • JPEG (*.jpg;*.jpeg) 
 • GIF (*.gif) 
 • PNG (*.png)Model (*.mesh) 
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The View menu 

This dictates which panels and toolbars appear on the workspace, a useful feature when trying to 
simplify its appearance.  
It also has a Zoom menu, which allows you to display more icons in the workspace window than 
when using the default zoom setting. The current zoom setting is displayed on the Zoom sub-
menu, and on the right hand side of the status bar, at the bottom of the Flowcode window. 
The size of each icon is dictated by the zoom level - for larger icons, zoom in - for smaller icons, 
zoom out. Use the Print Preview function to optimise the appearance of your flowchart on the 
paper.  
The Zoom menu can also be accessed by right-clicking on the flowchart workspace. 
Function key shortcuts: 

  • Increase Zoom (F3) - increases zoom size by 5% 
 • Decrease zoom (F2) - decreases zoom size by 5% 
 • Default zoom (F4) - set zoom to 75%  
 • Zoom to fit - Zooms to fit the whole flowchart into the current window  
 • Zoom to fit width - Zooms to fit the width of the flowchart into the width of the window.  

 

Global Settings 
The View menu also includes a Global Settings for configuration of application and flowchart
 (View > Global Settings)   Then select the appropriate Tab.  

 

 
 
 
Application Tab 

The Override language option allows the user to 
override the default Flowcode language settings 
and to display Flowcode in a specified language.  
To do this, select the language from those available 
on the drop down list and restart Flowcode. 
It will do so in the selected language, provided the 
relevant language pack has been installed. 
 

This tab enable setting of general application settings, 
such as language, document appearance, autosave
feature, code generation options and web access.

The OpenGL graphics engine can here be set as
hardware or software mode.
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Flowchart Tab 

This tab enable setting of flowchart display styles, 
text size and font.
Annotation and tooltip style customizations.

 
Scheme Tab 

This tab contains the settings for changing the 
appearance of the flowchart, including icon colours 
and graphics, background colours and patterns etc.  
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Locations Tab 

This tab enables the setting of backup filenames
and the location of toolchain directories.

Additional directories can be added for the location
of custom components.

 

 
Analog Inputs and Digital Pins 

Analog input values can be set 
and Digital pins monitored and set
via the windows enabled from
View > Analog Inputs
and
View > Digital Pins

 
View Windows (Simulation) 



Copyright © 2016-21 Matrix Technology Solutions Limited www.matrixtsl.com  41 

 
Getting Help with Flowcode

 
Flowcode has within it and online an extensive wiki which can be 
accessed through the Help toolbar menu or via an internet browser 
and visiting this page: 
 
http://www.flowcode.co.uk/wiki/ 
 

 
Additionally every single component within Flowcode has a 
page on the wiki which explains all the macros within it, and 
usually includes some examples as well.  
 
To access the component help simply right-click your mouse on 
any component in either the 2D or 3D panel and select Help. 
 
From here you can see:  

 • Explanation of the component 
 • Some examples of the component in use 
 • Macro references explaining what each macro plus the 

parameters and return values. 
 

Library Updates
 

Flowcode components and target device information is keep up to date via an online
system accessed from the Help menu  (Help > Library Updates) 

  

     Introduction to Flowcode                                                                                                                      Section 3  



Copyright © 2016-21 Matrix Technology Solutions Limited www.matrixtsl.com 

  

 42 

     Section 4:    Flowcode 

               First Program 

      

 

Adding digital outputs - Light the LED 
Create a program that lights an LED attached to the microcontroller.  
This program introduces the topic of how to control a digital output.  
 
The tutorial provides a clear, step by step approach enabling you to create your first 
program using Flowcode. It can be run in Flowcode’s simulation mode before 
compiling to the board for testing and development. 
 

 
 
 
 

Set-up using E-Blocks 2. 

Note: This tutorial refers to the port settings (ports A and B) as used with PIC. 
For Arduino users, please use ports C and D as appropriate. 
(Port C on the Arduino ’Maps’ to Port A of the Combo board). 



Copyright © 2016-21 Matrix Technology Solutions Limited www.matrixtsl.com 

  

 43 
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Starting a new project 

Select 'New Project’ at the welcome screen, or via the menu (File > New Project)  
On the “Embedded” tab choose a target device or development board.

You will notice that the selection list includes details of the features and peripherals of each target.
This is useful when selecting a device for a particular project.

For our new project, if we are using for example the MatrixTSL E-blocks2 PIC development board,
choose the BL0011 target from the “Free targets” list. 

In this case the target choice also selects the correct 16F18877 device 
and presets the correct values for clock oscillator frequency and other settings.

Click on the “New <BL0011> Embedded Project” button to start the project.

TIP: The project target device can be changed later via the menu (Build > Project Options)   

For Arduino users, please select an appropriate Arduino development board. 
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Output

Loop

Create a Flowchart. 
Move the cursor over the Loop icon, in the Icon 
toolbar. Click and drag it over to the work area.  
While dragging it, the normal cursor changes into 
a small icon. Move it in between the 'BEGIN' and 
'END' icons. As you do so, an arrow appears 
showing you where the Loop icon will be placed. 
Release the mouse button to drop the icon in be-
tween the 'BEGIN' and 'END' boxes. 

 

 

Add an LED Array (PCB) to the 3D system panel. 
The LED array can be found under Outputs in the 
Component Libraries Toolbar. 
(Component Libraries > Outputs >  
LED Array (PCB) > Add to 3D system panel) 

Add an Output icon within
the loop on the flowchart
in the same way.

TIP: The colours of the icons
on your system my be different.
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Go (F5)

Stop (Shift+F5)

Simulation mode

Changing port settings 
Double click on the 
Output icon that you’ve 
put in your flowchart and 
the Properties box will 
come up. 

Select Port B. 
Input a value of 1. 

(You have done this be-
cause the LEDs in your 3D 
system panel are currently 
attached to port B, so we 
are sending the Output to 
the same port). 

Run the simulation. 
Select the Go icon from the  Debug menu bar and the simulation of 
the LED will light up in the 3D system panel. 

TIP: Remember to stop your simulation before doing anything else.  
      (If Flowcode isn’t doing as you expect, check that you haven’t accidentally left your simulation running). 
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Save (Control+S)

Compile to Target

Save your program  (File > Save) 

Connect your target development board to a power supply.
Connect the USB programming lead to your PC.

Click the Compile to Target from the Build menu as shown
 (Build > Compile to target) 

Changes to try after successfully lighting your LED. 
Highlight the image of the LED array in the 3D system panel and right click to select the Properties. 
Here you can change the number of LEDs in your array by changing the value under count. 
Try changing the colour of the LEDs in  the simulation as shown below. 

6 red LEDS in simulation. Property settings for  6 red LEDS. 
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Upper row LEDs

Changing the port settings. 
Bring up the Output icon properties (double click) and change the Port settings to Port A. 
Highlight the image of the LED array in the 3D system panel and right click to select the Properties, and 
change the Port settings to Port A. 

Run in simulation mode 
and then compile to 
chip. You should see the 
first LED of the other 
row light up. 

You can practise changing the ports by changing them back to port B.  
Change the value from 1 to 255.  Test in simulation mode and then compile to chip (all 8 LEDs light up). 
Experiment using other values.    (TIP: See Number Systems Worksheet).  
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Binary Numbers 

Digital electronic devices can't cope with decimal numbers. Instead, 
they use the binary system, which uses only two numbers 0 and 1. 
The number 1 could be represented by a high voltage signal, while 
number 0 could be a low voltage.  
 
The decimal system uses ten numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
On reaching the last of these, 9, we start again with 0, but add 
another number in front. For example, after 8 and 9 comes 10, and 
after 18 and 19 comes 20 and so on.  When we reach 99, both of 
these go back to 0s but with a 1 in front, to make 100.  

 
 
 
 
 
 

 
In binary, the same thing happens, but a lot more often, because it 
uses only 0s and 1s. Counting up starts with 0, then 1, then back to 0 
with a 1 in front, making 10 (not ten - it's two) Next comes 11 (three) 
and start again with two 0s but with a 1 in front, to give 100 (four) 
and so on.  
 
Notice that each time the binary 1 moves one place to the left, it 
doubles in value of the number in decimal. 
We can use this idea to convert between number systems.  
 

TIP: In any binary number, the bit at the left-hand end, the Most Significant Bit (MSB), has the highest 
value. The one at the right-hand end, the Least Significant Bit (LSB), is worth least. 

 

Hex Numbers 

Hexadecimal, 'hex' for short, is a another system for representing numbers.  
 • A binary digit is either 0 or 1.  
 • A decimal digit varies between 0 and 10.  
 • A hex digit has sixteen possible states.  

Sixteen states is a problem, as we have only the digits from 0 to 9. To get round this, we use the 
letters A to F to provide the additional six digits required.  

Working with the binary number with eight digits is a handy convention as computers (and the PIC 
MCU) store information in groups of eight bits. 

A single memory cell inside the PIC MCU can store a number ranging from 0000 0000 and  
1111 1111. In decimal this range is 0 to 255. The equivalent in hex is 0 to FF.  
 

TIP: You can enter a hex number into Flowcode by preceding it with '0x' in any of the dialogue boxes.  

Decimal Same in binary 

0 0 

1 1 

2 10 

3 11 

4 100 

5 101 

6 110 

7 111 

8 1000 

9 1001 

10 1010 

Decimal Same in binary 

1 1 

2 10 

4 100 

8 1000 

     Flowcode First Program                                              Support  

BINARY VALUE 

16 8 4 2 1 
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A single memory cell inside a PIC device can 
store a number ranging from 0000 0000 and 
1111 1111. In decimal this range is 0 to 255. 
The equivalent in hex is 0 to FF. 

      Coding Constructs   -   Number Systems 

Tasks 

Use Flowcode to: 
 a)  Check your work from the table above using Flowcode. 
 b)  Enter a hex number into Flowcode by preceding it with '0x' in any of the dialogue boxes.  
       Can you light the same LED patterns using Hex? 

Complete the table below by: 
 a)  Shading in the LEDs that light, for the first three rows. 
 b)  Working out what number produces the LED patterns shown in the last three rows. 

1 

2 

                                                                                                                              Flowcode First Program                                  Number Systems 
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     Section 5:    Flowcode 

                 Examples 

      

 

All of these examples can be tried out using either a PIC or an Arduino 
microcontroller.  
 
Arduino users should familiarise themselves with Arduino Adjustments in  
Appendix 1, (page 88) and adjust any port settings accordingly. 
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Example 1. Adding digital inputs - Where's the fire? 
 
The scenario 
 

A large building has a number of heat sensors in its 
fire alarm system. When there is a fire, the fire 
brigade needs to know where the fire is. In other 
words, they need to know which heat sensor has 
triggered the alarm.  
The system is controlled by a PIC MCU. There are five 
heat sensors, connected as inputs to port A. Port B is 
set up as the output port and connected to a set of 
five LEDs. If a heat sensor detects a fire, the 
corresponding LED lights up.  

 
 
 
 

Setting up the flowchart 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 

     Flowcode Example 1                                                            Fire 

Open Flowcode and create a new project 
suitable for the board you are using. 

Drag the Loop icon, the Input icon and 
the Output icon into your Flowchart from 
the icon toolbar to create a Flowchart as 
shown.  

Set Input to port A and Output to port B. 

 

For Arduino users, please use ports C and 
D as appropriate. 
 
(Port C on the Arduino ’Maps’ to Port A of 
the Combo board). 
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     Flowcode Example 1                                                            Fire 
 
Creating the variables 

 • Right-click on the input icon, and select Properties from 
the menu. The Input Properties dialogue box appears, 
shown opposite. This allows us to add a variable. 
But what is a variable?  
A variable is a place where we can store information, in 
particular, information that changes as our program runs. 
In this case, it is the number of the heat sensor that 
triggers the alarm. It might be sensor 1 that goes off, or 
sensor 5…. .  

We are going to use a variable called SENSOR to store 
the information on which sensor has been triggered. 

 
 • Click on the arrow next to the Variable box. 

 You will see the next dialogue box. 
 

 • Now hover over the word Variables and the arrow 
appears. Click on it and select Add new. 
Another dialogue box, shown opposite, appears, 
offering a large choice of variable types. For now, 
accept the default type of Byte, a variable which  
can store numbers from 0 to 255. 
Type the name SENSOR as the name of the new 
variable and click on the ‘OK’ button. It now appears 
in the list of variables that the flowchart can use.  

 

 • Double-click on the name of the variable to use it,  
or alternatively click and drag the name into the 
variable box. 
 
You now see the Input Properties box again.  
Notice that you need to tell the system which port 
you are going to use to input the data the system needs. It is set to port A at the moment, and 
we are going to leave it that way.  
In this case, the system needs to monitor the heat sensors and so each sensor will be connected 
to a different bit of port A. Click on ‘OK’ to close the Input Properties box.  
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     Flowcode Example 1                                                            Fire 
 

More on variables 

In the previous section you added a variable to the program 
using the variable dialogue box.  
Computer signals consist of streams of binary 0s and 1s on 
each wire. A group of eight wires can carry eight bits, (binary 
digits) simultaneously. This grouping of eight bits, known as a 
byte is used for much of the internal wiring inside 
microcontrollers and for the registers that hold and process 
data. 
It is also used within memory subsystems. The contents of a 
memory register having eight bits can vary from 0 to 255. 
A variable inside Flowcode can be configured to use just one 
memory register or more than one.  

 
Flowcode variables: 

Flowcode offers eight different types of variables:  
 • a Bool (Boolean) variable can either be 1 or 0 (true or false). 
 • a single register, known as a Byte variable, can store numbers from 0 to 255. 
 • a double register, known as an Int variable, can store numbers from -32768 to +32767. 
 • a double register can also be unsigned, when it is known as a UInt variable, which can store 

numbers from 0 to 65535. 
 • a quad register, known as a Long variable, can store numbers from  -2147483648 to 

2147483647. 
 • a quad register can also be unsigned, when it is known as a ULong variable, which can store 

numbers from 0 to 4294967295. 

TIP: Use a Byte variable for simple counters and for variables that will not go above the value 255. 
It is the most economical in terms of memory space and also the fastest. Mathematical processes 
involving two bytes (often referred to as 16 bit arithmetic) take longer to execute. A multiple 
register, known as a String variable, can consist of a number of Byte variables - the default in 
Flowcode is 20.  

Other variable issues 
Floating point numbers (that contain a decimal point somewhere in them), can also be used, 
although they represent a much wider range of values than an integer. They suffer a loss of 
accuracy over large ranges.  
Finally an object handle is used to reference a more complicated piece of data (such as a file, 
component or a block of text) whose internal format is not known.  

Why worry? 
The number of registers inside a microcontroller is limited, and in larger applications the number 
and types of variables must be managed carefully to ensure that there are enough. 
On downloading a program, the variables in Flowcode are implemented in the Random Access 
Memory (RAM) Section of the PIC MCU. In the 16F18877 there are 4096 Bytes of memory. This 
means you can have 4096 Byte variables, 2048 Int variables or 204 Strings each consisting of 
twenty Bytes or characters.  
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Setting up the outputs 
 • Next, right-click on the Output icon, and select Properties or just 

double-click on it. The Output Properties box appears. 
 • Click on the arrow, next to the Variable box. You will see the 

SENSOR variable listed. 
 • Double-click on the word SENSOR or click and drag it to the 

Variable box. 
 • The Output Properties box now shows that the system is set to 

output whatever data is stored in the SENSOR variable. Change 
the port used to port B, by clicking on the arrow, in the port 
window, and then clicking on PORTB in the menu that opens. 

 • Click on ‘OK’ to close the Output Properties box. 
 • The flowchart should now look like this: 

Notice the arrows in the icon annotations. They show that information will flow from port A 
into the flowchart, via SENSOR, (Input icon) and from the flowchart, via SENSOR, out to port B 
(Output icon). 

Adding the LEDs 
 • Now click on the Outputs button and select the LED Array (PCB) 

icon. Click-and-drag it onto the System Panel. 
 • Change the Count property under the Simulation section to the 

value 5 by clicking on the box next to the Count property and 
using the keyboard to input the value. 

 • Click next to Port under the Connections section to open an 
interactive view of the chip, showing the compatible pins. 

 • Click on the drop-down menu and select the PORT B option.  
You have now connected the LEDs to the pins on port B. 

(For Arduino users, please use ports C and D as appropriate). 

Adding the switches 
 • You are going to use five switches to simulate the five heat sensors. The switch that is 

‘on’ (closed) is the heat sensor that has triggered the fire alarm.  
 • Click on the Inputs button and select the Switch Array (slide). Drag it into a suitable spot on the 

System Panel. 
 • Click on the box next to the Count property and change the value to 5. Check that the 

component is connected to PORTA. 

Simulating the program 
 • Click once on the Step Into button. The Simulation Debugger window appears but ignore it for 

now. 
 • Move the cursor over one of the switches and click, to simulate detecting a fire. The switch 

graphic toggles to the closed position. Click the Step Into button a few more times to simulate 
the complete program. 

The program is finished. You have just detected a fire, which turned on a heat sensor. 
The LED array tells you, or the fire brigade, which sensor detected the fire. 
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          Flowcode Example 2                                                       Sheep 
 
Example 2. Using loops - Counting sheep 
 

Counting sheep, badly at first, but without falling asleep!  

The plan is straightforward - when a sheep passes through the gate, it 
breaks a light beam. This sends a pulse to a counting system, which then 
adds one to the total stored in the system.  

We display this total on the LED array. 

(Note that Flowcode has a Beam Breaker component, based on the Collision Detector. Although 
this would do a far better job, for now we detect the light 
beam interruption using more basic methods).  

 
Setting up the flowchart 

 • Launch Flowcode and start a new flowchart. 
 • Create the flowchart shown opposite.  
 • It contains a Loop icon and a Calculation icon. 
 • It contains an Input icon and an Output icon.  

 
 

 
 
 
 
 
 
 
(For Arduino users, please use ports C and D as appropriate). 
 
Creating the variables 

We are going to create two variables, one called SHEEP and the other 
called TOTAL.  
 • The SHEEP variable will show whether a sheep is present or not.  
 • The variable TOTAL will store the total number of sheep recorded so 

far.  
 • Click View on the menu bar, and select the Project Explorer 

 (View > Project Explorer).  
 • Click on the Globals button at the top of the Project Explorer panel. 
 • Hover over Variable in the project explorer panel and click on the 

arrow to Add new. You now see the Create a New Variable dialogue 
box. Type in the name SHEEP and then click on ‘OK’. You can leave 
the variable type as Byte as there will not be that many sheep. 

 • Create a variable named TOTAL in the same way. 
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Setting up the calculation 

 • Double-click on the Calculation icon to open 
the Properties dialogue box. 

 • Change the Display name to "New total". 
 • Create the calculation by typing the following 

in the Calculations window: 
 TOTAL = TOTAL + SHEEP  
 • We will simulate breaking the light beam 

using a switch on port A bit 0. 
 • The Input properties are set up to store whatever number appears on port A in the variable 

called SHEEP. Initially, that number is 0. When the switch is pressed, the number on port A and 
stored in the variable SHEEP is 1 (with only one switch, the biggest number we can create on 
port A is 1). 
When the Calculation icon is executed, the number stored in the variable SHEEP is added to 
the TOTAL variable. Hence, when a sheep breaks the light beam, TOTAL is increased by 1. With 
no sheep present, TOTAL remains unchanged.  

 • Click on the ‘OK’ button, to close the dialogue box. 

Configuring loop properties 

 • Double-click on the Loop icon to open its 
Properties dialogue box. (This shows the 
options for controlling the loop).  
Next to the Loop while statement is the loop 
control text box, where you write the loop 
condition (the program continues looping 
until this condition is met).  
Examples of loop conditions:  

 • count = 10  (Loop runs as long as 
the variable 'count' = 10)  

 • count > 4  (Loop runs as long as the 'count' is greater than 4)  
 • count = preset   (Loop runs as long as the 'count' is the same as the variable ‘preset’) 

In all of these, looping continues as long as the condition in the Loop while text box is 'true'. 

In programming 'true' has a special meaning. It is assigned a numerical value of 1 so that a test 
can determine if something is ‘true’. Similarly 'false' is assigned the numerical value 0.  

The default condition in the Loop while text box is 1 - this condition is always 'true' and so with 
this value, the loop will run forever. Programs usually contain a ‘loop forever’ structure. If they 
do not, the program will end suddenly and the computer will just sit there doing nothing.  

When to test? 
You can configure the properties to test the loop condition either at the start of the loop or at the 
end. Understanding this option is important. It can affect the number of times that the program 
will loop. 

Loop for a set number of times 
Sometimes, you just want to run a loop for a set number of iterations. To do this, check the Loop 
count box and enter the number of loops you want in the associated text box.  
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Setting up the input 
 • Right-click on the Input icon, and select Properties from 

the menu, to see the following dialogue box: 
 • Change the display name. Double-click on Input in the 

Display name box and type "Check the sensor". 
 • Click on the  arrow next to the Variable box to open the 

Variable Manager. 
 • Double-click on the word 'SHEEP' to insert it into the 

Variable box. 
 • By default, the input is port A, which is what we want, (Arduino use PORTC), Click on ‘OK’ to 

close the dialogue box. 

Setting up the output 
 • Double-click on the Output icon to open the output Properties dialogue box. 
 • Click on the  arrow  next to the Variable box. 
 • Double-click on the word TOTAL to insert it into the Variable box. 
 • In the output Properties box, change the port used to PORTB, (Arduino use PORTD). 
 • Click on 'OK' to close the dialogue box. 

 The flowchart should now look like this:  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
(For Arduino users, please use ports C and D as appropriate). 
 

Adding the LED array 
 • Click once on the Outputs box and select the LED Array icon. Place it on the System Panel by 

moving the cursor over it and then ‘clicking-and-dragging’ it into position. 
 • Change the value of the Count property to 8 to set the number of LEDs in the array. 
 • Click the Connections property in the Properties pane. Select PORTB from the drop-down 

menu to connect the LEDs to the pins on port B. 
 • You can change the colour of the LED array in the Colors section. 
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Adding the switch 
 

 • A single push switch will represent the light beam sensor.  
 • Select Switch (Push,Panel) from  Component Libraries > Inputs 

Add or drag it onto the System Panel.
 • On the Properties pane Connections section, check that the Connection property for the 

switch is $PORTA.0 i.e. the switch is connected to port A bit 0. 
 • Select Label from Component Libraries > Creation  
 • Click on the Label property in the Properties pane and replace the default text with "Light 

beam interruption". 
 • To adjust the size of the text, click on the Position tab and change the values of ‘Width’ and 

‘Height’ under the ‘World size’ section. Move the text to a suitable position next to the switch. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Simulating the program 

 • Now run the simulation by clicking on the Run button.           
 • The Simulation debugger window appears - close it as it is not needed. 
 • Move the cursor over the switch and give the briefest mouse click you can. 

What happens depends on how quickly you click, and how fast the PC works. 

We want only the B0 LED to light, to show a total of 1 sheep. The program runs at high speed, 
however, and so keeps cycling through the Input and Calculation steps. As a result, before you 
have time to release the push switch, the total has incremented (increased by one) several times. 
This problem is explored in the next section.  
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The solution: Adding a Delay 
 

The problem - the program runs too fast! 

Before we have time to release the switch, the program has run through several times, adding one 
to the total each time.  

We need to slow it down by adding a delay.  
 • Move the cursor over the Delay icon. 
 • Drag it onto the main work area and drop it between the Calculation and the Output icons. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 • Change the value in the Delay value or variable box to 200 and then click on the ‘OK’ button. 

This causes a 200 millisecond (0.2 second) delay when the Delay icon is activated. In other 
words, the system just sits there and does nothing for 0.2 seconds. 

 • Now run the simulation again. Providing you don't keep it pressed for too long, you should find 
that the LED array shows an increase of 1 each time you press the switch. 

 • The program now works satisfactorily, providing the sheep rush through the light beam in less 
than 0.2 seconds. The delay could be increased to allow for slower sheep! 

 

Note: This program shows the total number of sheep in binary format.  

 • Double-click on the Delay icon to 
open the Properties dialogue box. 
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Example 3. The LCD display - Posting messages 
 

Programs using the LCD display need to use the crystal 
oscillator. If necessary, in Flowcode, select Build from the 
main menu, then Project Options and finally the Configure 
tab. Select the crystal oscillator from the list of options 
(Build > Project Options >Configure).  

LCD displays 
Flowcode comes with a number of components that add commonly used subsystems to Flowcode, 
such as the LCD display, 7-segment display, and analogue inputs devices.  

Here, we look at the LCD display, the basic text display subsystem on a range of electronics 
devices, from calculators to mobile phones. It can display text or numbers on one or more rows of 
the display.  

In most programming languages, the LCD is one of the last things you learn, as it is quite a 
complicated device to program. However, Flowcode takes care of the complexities, making the 
LCD simple to use. The LCD display referred to here is the one used on the E-Blocks Combo board 
and on the LCD display - a four row, twenty character display.  

Adding the LCD component 
Before you can use the LCD, you need to add a LCD component to a Flowcode panel.  

Select the LCD (Generic, 20x4) component from Component Libraries > Displays  
add it to the System Panel. A LCD display mimic  will now appear on the panel.  

At the top of the Properties pane, the Component section identifies the component you have just 
selected. By default, the LCD is added to port B.  

The LCD display requires five connections. It displays letters and numbers conveyed as serial data 
on this five wire bus.  The techniques involved go beyond this tutorial. Fortunately, Flowcode has 
some embedded routines that take care of the complexities.  
Drag a Component Macro icon onto the flowchart and open up the corresponding macro dialogue 
box by double-clicking on it. 

 

Now scroll through the LCD section in Components and 
select the macro called Start. This initiates the LCD, clears 
the display and gets it ready for action. We examine more 
LCD macros in the next couple of sections, but for now scroll 
through the available macros and take a quick look at each. 
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Writing messages 
 

To display text on the LCD, simply type it in. 
 • Add another Component Macro to the flowchart and 

open the macro dialogue box. 
 • Select the LCD macro called PrintString. This requires a 

single parameter (item of data), 'Text' (the text to be 
printed).  

 • Type the text into the parameter box surrounded by 
quotation marks, e.g. "Hello World" 

 

 

 • Run the program and the text will be sent to the LCD display. 

 

 
 
 
 
 
 
 
 

 
 
Other LCD functions 
 
There are a number of other useful functions in the LCD macro list: 

 
Clear - Clears the display and resets the cursor position (where the display prints next,) to '0,0' i.e. 
top left.  
 
Cursor - Moves the cursor to the specified location. The two parameters, ‘X’ and ‘Y’ select the 
horizontal and vertical positions of the cell respectively. ‘0,0’ is the top left cell, ‘0,1’ the first cell 
on the second line, ‘3,2’ the fourth cell on the third line etc. 

 

PrintNumber - Works like 'PrintString' but prints a number instead of a string. It can be used with 
variables, or with actual numbers.  
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          Flowcode Example 3                                                 Messages 

 
 

Using PrintNumber 
 
Altogether we will add four Component Macros to the flowchart. 
 

 • To the first Component Macro add Start. 
 • To the second select PrintString and add "Hello World" (with quotation marks). 

 
 • To the third select Cursor and add 0,1 to the parameters. 
 • To the fourth select PrintNumber with the parameter value as 123. 
 • Click Run to simulate the program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TIP: Try changing the values of the Cursor parameters and see where the numbers print. 
 The ‘y’ value needs to be between 0 and 3 and the ‘x’ value needs to be between 0 and 19. 

(between 3 and 17 to see all three figures 1 and 2 and 3). 
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     Flowcode Example 4                                               Stopwatch 
 
Example 4.  Stopwatch 
This example uses example 5 (Using PrintNumber) as a starting point. 
 
 

 • Expand the program from the previous example (Using PrintNumber) by dragging a Loop icon 
below the PrintString Component Macro.  

 • Change the text in the PrintString Component Macro to "Hundredths" (with quotation marks).  
 • Drag a Calculation icon into the Loop. 
 • Create a variable called Count as an Int type (Initial value 0). 
 • Double-click on the Calculation icon. In the Calculations text box type Count = Count + 1   

(This will add 1 to the value of variable count every time the icon is executed).  
 • Next drag another Component Macro into the Loop. 

 
 • Double-click the Component Macro and find Cursor under the LCD macros. 
 • Enter 0,1 as parameters to position the cursor on the first character of the second line.  
 • Next, drag another Component Macro onto the workspace. 
 • Select PrintNumber and enter Count as the parameter.  

 
 • Now, drag a Delay icon into the flowchart and set the delay to 10ms (which equals one 

hundredth of a second).  
 
 • The counter will count (approximately) the time elapsed in hundredths of seconds.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TIP: You can refine the program by clicking 
on each icon and entering comments to 
describe what the icon does.  
 
It  may seem like a lot of effort, but it 
can help with more complex programs. 
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     Flowcode Example 5                                                Calculator 
 

 
Example 5. Using binary numbers - A binary calculator. 

 
In this section you build a binary adder - a 
system that makes the microcontroller add 
two numbers.  
 
The simplest way to input a binary number is 
to use a set of switches attached to the input 
port. 
 
To input two numbers, we need two sets of 
switches and two input ports.  
To see the result of the calculation, we will use 
an LED array, connected to the output port. 
We need a microcontroller with three ports.  

 
 
 
 
 
 

Setting up the flowchart 
 • Launch Flowcode and start a new flowchart. 
 • This time we take notice of this dialogue box: 

We need a microcontroller with at least three ports. 
Pull the slide bar down to find the 16F18877PIC MCU. 

 • Click on it to select it and then click on ‘OK’. 
 • Click-and-drag a Loop icon. 
 • Click-and-drag an Input icon and drop it between the 

ends of the loop. 
 • Click and drag a second Input icon and drop it in 

between the ends of the loop. 
 • Click and drag an Output icon and drop it just below the 

Input boxes. 
 • Click and drag a Calculation icon, and place it in 

between the second Input icon and the Output icon. 
 • Your flowchart will look similar to this: 

 
(the example image has descriptions and variables added). 
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     Flowcode Example 5                                                Calculator 
 

Creating the variables 
 • Click View on the menu bar and ensure that  Project Explorer is 

checked (View > Project Explorer). 
 • Click on the Globals button at the top of the Project Explorer panel. 

We are going to create three variables, called input1, input2 and sum. 
The first two store the numbers fed in from the switches.  The variable 
sum stores the result of adding them together.  

 • Hover over Variables in the Project Explorer panel then click on the 
arrow that appears. 

 • Click Add new and the Create a New Variable dialogue box 
appears. Type in the name input1, and click on the ‘OK’ button - 
leave the variable type as Byte. 

 • Create variables, input2 and sum in the same way. 
 
 

Setting up the inputs 
 • Right-click on the top Input icon, and select Properties.  

The Properties: Input dialogue box appears. 
 • Double-click on the word Input in the Display name box to 

highlight it. 
 • Type ‘Input the first number’ to replace it. This will appear 

alongside the Input icon in the flowchart. 
(Adding labels like this helps users to understand what is 
happening). 

 • Click on the arrow next to the variable box to open the 
Variable Manager.   

 This lists the three variables that you just created. 
 • Double-click on input1 to use this variable in the input box.  
 • Back in the Input Properties dialogue box, click on the down 

arrow at the end of the port window and select PORTB to 
replace PORTA. 

 • Click on ‘OK’ to close the dialogue box. 
 • Double-click on the second Input icon, (a quicker way to open 

the Properties box.) 
Configure this input to: 
 • display the label ‘Input the second number’ 
 • use the variable input2 
 • use PORTC.  
 • Then close the dialogue box by clicking the ‘OK’ button. 

 
 
 
 
For Arduino users  these two Ports will need to be set as follows: 

 • Input 1 set to PORTC (to use the Port A switches on the Combo board). 
 • Input 2 set to PORTD (to use the Port B switches on the Combo board). 
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     Flowcode Example 5                                                Calculator 
 

Setting up the calculation 
 • Double-click on the Calculation icon 

to open the Properties dialogue 
box.  

 • Change the Display name: to ‘Add 
the two numbers together’.  

 • In the Calculations box  insert: 
sum = input1 + input2 
(Either type this in directly, or drag 
in variables from the right window 
and then insert the = and + signs) 

 • Click on the ‘OK’ button, to close the dialogue box.  

Setting up the output 
 • Double-click on the Output icon, to open the output 

Properties dialogue box.  
 • Click on the arrow next to the Variable box. 
 • Double-click on sum to insert it in the box. 
 • Back at the output Properties dialogue box: 

 • change the port used to PORTD, (Arduino PORTB) 
 • click on ‘OK’ to close the dialogue box.  

 

Adding an LED array 
 • Click on the Outputs tab and select LED Array             

Place it in the middle of the System Panel by moving the 
cursor over the component and then clicking-and-
dragging it into position (or right-clicking it and selecting 
Centre all objects). 

 • Click next to the Count property under the Simulation 
section on the Properties pane and change the number 
of LEDs to seven. 

 • Click next to the Port property and select PORTD from 
the drop-down menu to connect the LEDs to the pins  

     on port D, (Arduino PORTB). 
 • Change the colour of the LED array to red (0000FF) 

Adding the switches 
Two sets of switches are used, one for each binary number. The output port has only eight bits. 
The biggest number it can output is 1111 1111 (= 255 in decimal). We are going to limit ourselves 
to inputting seven bit numbers  meaning that the biggest number we can input is 111 1111 (= 127 
in decimal). If we used bigger numbers, we would overflow the capacity of the output.  
 • Click on the Inputs tab, select Switch Array (Slide) and drag it onto the System Panel above the 

LED array. 
 • Open the Properties pane for the Switch Array (Slide). Connect it to port B, using the  arrow 

next to the Port property to open the drop down menu (Arduino PORTC). 
 • Add a second Switch Array (Slide) to the System Panel in the 

same way. Position it under the LED Array and connect it to 
PORTC (Arduino PORTD). 
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     Flowcode Example 5                                                Calculator 
 
Slow simulation 

As described earlier, Flowcode allows you to progress through the flowchart one step/icon at a 
time, to see the effect of each on the variables and on the output.  
 • There are three ways to simulate the program step-by-step: 

 • Click on Go on the Debug toolbar and on the Step Into button (Debug > Step Into) 
 • Press the F8 function key on the keyboard.  
 • Click on the Step Into button on the main toolbar in the simulation section.  

Several things happen: 
 • a red rectangle appears around the BEGIN icon, showing that this is the current step. 
 • the Simulation debugger window appears (containing Variables and Macro Calls).  
 • the Variables section lists the three variables that you defined for this program, and 

shows their current values (all zero at the moment). 
 Ignore the Macro Calls section for the moment.  

Now set up two numbers on the switch components. 
 • Move the cursor over the switch box connected to port B.  
 • Click on switches B0, B1, and B3, to activate them.                     

You have set up the binary number 000 1011 (= eleven in decimal.) 
(Switch B6 gives the most significant bit and B0 the least significant bit).  
 
 • Set up the number 000 1111 (fifteen) on the switches connected to port C. 
 • Now Step Into to the next icon in the program by, for example, pressing F8 once more. 
 • The red rectangle moves on to the next icon, the Loop icon, but little else happens. 
 • Press F8 once again. The red rectangle moves on to the first Input icon. 
 • Press F8 again and the Variables box shows that the input1 variable now contains eleven (the 

result of the Input instruction just carried out). 
 • Press F8 again and the Variables section shows that input now contains fifteen. 
 • Press F8 again and the calculation is carried out. The sum variable stores the result. 
 • Press F8 again. The value stored in sum is transferred to the LED array. 

It looks like:   

 

Reading from the most significant bit (D6) to the least significant bit (D0), the LED array shows the 
number 001 1010. In decimal, this is the number 26. No surprises there then.  
 • Repeat the same procedure using different numbers and step through the program to check 

what the sum of the numbers is. 

 TIP: Explore adding graphics to your binary calculator to make it easier to read. 
Component Libraries > Creation to add digits above your LEDs. 
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     Flowcode Example 6A                                            Microwave 
 

Example 6. Binary logic in control. 
Electronic systems can make decisions. 

Very often, these are of the form "If this AND this is true, then..." or "If this OR this is true, then...".  
They rely on specific combinations of circumstances in order to take some particular action. 

They are examples of using binary logic. The answer to the “If…” question is either “Yes” / “No”, or 
“True” / “False”, i.e. one of two possibilities (a binary solution). This answer could be expressed as 
a logic 0 or a logic 1 and electronically by a high voltage or a low voltage. 

There is a class of digital electronic components, called logic gates, that perform exactly these 
decisions. The inputs and output are logic 0 or logic 1. 

We can program Flowcode to make exactly the same decisions.  

6A. Controlling a microwave oven 
For reasons of safety, a microwave oven has a door sensor to 
make sure that the microwave generator will not operate if the 
door is open. Put another way, the generator operates if the door 
is closed AND one of the heating control switches is pressed. 

We can build this condition into a Flowcode program. 

Setting up the flowchart 
 Launch Flowcode with a new flowchart. 
 Create the flowchart shown opposite. 

It uses: 
 • a loop icon 
 • two input icons 
 • three output icons 
 • two decision icons 
 • two calculation icons 
 • a delay icon. 

  
 Create four variables: 

 • ‘door’ (to store the state of the door switch). 
 • ‘control’ (to store the state of the on/off  

 control switch) 
 • ‘output’ (to control whether the microwave 

switches on or not) 
 • ‘count’ (to monitor how many times the 1s delay 

has occurred. Give it an initial value of ten, so that 
the microwave oven will operate for 9s). 
 

 • Use the default configuration for the loop icon. 
 • Configure one input icon to store the state of the 

door switch (on port A bit 0) in the variable ‘door’. 
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     Flowcode Example 6A                                            Microwave 
 

 • Configure the other input icon to store the state of the control switch (on port A bit 1) in  
  the variable ‘control’. 
 • The upper calculation icon checks to see whether the door AND the control switch have  

  been pressed.  
Configure it using the equation output = control & door. 
The & signifies the AND operation.  
The result of this operation (0 or 1) is stored in the variable ‘output’. 

 • The upper decision icon checks the value stored in ‘output’.  
  (If output? is shorthand for If output=1?) 

Configure this decision icon. 
 

 • When the result of the calculation is 0, the program follows the ‘No’ route from the decision 
icon and the left-hand output icon is executed. This sends a logic 0 to the LED, ensuring that it 
(and the microwave generator) is switched off.  

   
  When the result of the calculation is 1, the program follows the ‘Yes’ route. The ‘Turn on’   
  output icon sends a logic 1 to the LED turning it on. 

Configure both of these output icons. 
 

 • The lower calculation icon reduces the number stored in the variable ‘count’ by one. 
Configure it using the equation count = count - 1 

 • The initial value of ‘count’ is ten. Provided the number stored in ‘count’ has not reached zero, 
the program follows the ‘No’ route. Eventually, after looping enough times, the number stored 
does reduce to zero. The program then follows the ‘Yes’ route and executes the ‘Turn off’ 
output icon, which is configured in the same way as the other ‘Turn off’ icon, to switch off the 
microwave generator. 

 
 

 
 
 
 
 
 • Add a switch array to the System Panel. Configure it to have only two switches, one connected 

to port A, bit 0 and the other to port A, bit 1. 
 
 • Add an LED connected to port B, bit 0  to represent the microwave generator. 
 • Add labels to the System Panel to identify the components.  

  Position them using the World coordinates under the Position tab of the label properties. 
 
 • Now simulate the program step-by-step, using the F8 function key repeatedly. 
 • Check what happens for different combinations of switch states and interpret this in terms of 

the behaviour of the microwave oven. What happens, for example, if the door is opened while 
the microwave generator is operating? 

 
For Arduino  the Ports need to be set to PORTC and PORTD (equivalent to A and B on the Combo board). 
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     Flowcode Example 6B                                                           Car 
 

Example 6. Binary logic in control. 
6B Controlling the interior light in a car. 

The interior light of a car can be controlled by another Boolean logic 
equation.  
For simplicity, consider a two-door car with the following behaviour: 
The interior light turns on when one door (A) OR the other (B) is 
opened and stays on until the ignition switch (C) is turned on. 
In Boolean-speak, we say that the light is on if (A OR B) AND NOT C is 
true. 
Once again, we can build this condition into a Flowcode program. 

Setting up the flowchart 
Launch Flowcode and start a new flowchart.  
Create the flowchart shown opposite, using: 

 • a loop icon. 
 • three input icons. 
 • two output icons. 
 • a decision icon. 
 • a calculation icon. 

 
Create four variables: 
 • door_A (to store the state of the switch on door A). 
 • door_B (to store the state of the switch on door B). 
 • ig_switch (to store the state of the ignition switch). 
 • output (to control whether the interior light switches 

on or not). 
 

 • Use the default configuration for the loop icon. 
 • Configure one input icon to store the state of the switch 

on door A (port A bit 0), in the variable ‘door_A’. 
 • Configure one input icon to store the state of the switch 

on door B (port A bit 1) in the variable ‘door_B’. 
 • Configure the other input icon to store the state of the 

ignition switch (port A bit 2) in the variable ‘ig_switch’. 
 

The calculation icon checks to see whether either door 
has been opened AND the ignition switch is NOT on.  

 • Configure it using the equation output = (door_A ||door_B) & !ig_switch 

The || signifies the OR operation and ! the NOT operation. The result of the calculation is 
stored in the variable ‘output’. 
 

 
(For Arduino users, please use ports C and D as appropriate). 
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     Flowcode Example 6B                                                           Car 
 

 
 • The decision icon checks the value stored in ‘output’. 
 • Configure this decision icon. 
 • When the result of the calculation is 0, the program follows the ‘No’ route from the decision 

icon and the 'Turn Off' output icon is executed, ensuring that the light is switched off. 
 
 • When the result of the calculation is 1, the program follows the ‘Yes’ route. The ‘Turn on’ 

output icon sends a logic 1 to the LED turning it on. 
 • Configure both of these output icons. 

 
 • Add a switch array to the System Panel. Configure it to have three switches, one connected to 

port A, bit 0, one to portA, bit 1 and the other to port A, bit 2. 
 
 • Add an LED connected to port B, bit 0  to represent the interior light in the car. 

 
 • Add labels to the System Panel to identify the components and position them as shown in the 

diagram (Component Libraries > Creation) 
 
Now simulate the program step-by-step, using the F8 function key repeatedly. 
 
Check what happens for different combinations of open doors and ignition switch states.  
Interpret the behaviour in terms of the behaviour of the interior light. What happens, for example, 
if the door is opened and then closed shortly after? Is this behaviour correct? 
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     Section 6:    Programming 

                 Exercises 

      

 

 The Programming Exercises are presented here as flexible tasks suitable for further 
development. 
 
Small, individual tasks can be developed into larger scale projects if desired. Try out the 
ideas, test them, experiment, develop your skills and see what you can create. 

 
The aim of the exercises is to develop experience in using Flowcode and in the process, 
develop understanding of the programming terminology and techniques it embraces. 
 
Programs can be tested by simulating them in Flowcode, but also downloaded to a 
microcontroller and tested on hardware.  It is generally assumed that the programmer 
is using a Microchip PIC MCU though the exercises are equally applicable to other 
microcontrollers.  
 
The section ends with further Challenges. These are even more open-ended and 
contain only a brief specification. 
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     Creating Outputs                                                       Exercise 1 
 
This exercise configures Flowcode to output specific digital signals to the LED array.  

  
 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 
 • Section 4 -  Flowcode First Project. Adding digital outputs - Light the LED  
 • Flowcode Wiki - Using masks. 

 
 
 • Change the logic level of a one single pin of a port. 
 • Send different 8-bit codes to the port of a microcontroller. 
 • Configure an Output icon. 
 • Use binary code. 
 • Manipulate logic output levels. 
 • Use LEDs to display an output. 
 • Compile a program to a microcontroller. 

 
 
Create a Flowcode flowchart then see if you can: 

a)  add a single Output icon, configured to light all the LEDs of a port and run the simulation. 
b)   alter the parameters to light only the odd-numbered LEDs and run the simulation. 
c)   light only the even-numbered LEDs. 
d)   light only the high ‘nibble’ bits (4 to 7) of the chosen port. 

 
Modify this program and see if you can: 

e)   repeat the previous steps using hexadecimal rather than decimal numbering. 
f)   only light the LED on bit 7, by sending an 8-bit value to the port. 
g)   only light the LED on bit 7, using the 'single bit' output method. 
h)   only light the LED on bit 7, using the 'masking' output method. 

 
Write a program that uses at least twenty Output icons to write different values to port B, one 
after the other. Use all four methods in this exercise - hexadecimal, decimal, single bit and mask-
ing. Simulate the program and review the results. 

(Save the program and download it to the microcontroller). 
 
TIP: Restart the program a number of times by pressing the Reset button on the  
       programmer board. 

Background 

Objectives 

Tasks 

1 

2 
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     Using Delays                                                               Exercise 2 
 
In this exercise, you learn how delays are used to slow down program execution. Microcontrollers 
work extremely quickly - typically executing  about 5,000,000 assembly instructions, every second. 
A human can detect and understand only around three stable images per second. 
To allow a high-speed microcontroller to communicate with ‘slow’ humans, we sometimes need  
to slow it down by adding Delay instructions.  

 
 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 
 • Flowcode Wiki - Loop icon properties. 

 
 
 • Add a delay to slow down execution of a program. 
 • Change the delay interval. 
 • Configure a delay icon. 
 • Control the speed of a microcontroller. 
 • Use an oscilloscope to time events . 

 
 
Begin by opening the program created in the last exercise (Exercise 1). 

a) Add Delay icons and configure them so that the output states can be viewed 
     comfortably even at ‘HS oscillator’ speed. 
b) Save the program and download it to the microcontroller, testing the program on the  
     E-blocks boards. 

 
Modify the length of the delays caused by the Delay icons. 

c)   Start with a delay of 1s. 
d) Progressively reduce the delay until it is too fast for your eyes to detect the different        
      output states. 
c) Download the program to the microcontroller every time and test it on E-blocks. 
d)   Use an oscilloscope to measure the delays you set up in Flowcode. 

e) Make a detailed drawing of the oscilloscope image, complete with voltage and timing infor-
mation and the delay time used in the Flowcode program. 

 

TIP: Do not test this in simulation mode - simulation timing is not always accurate because it  
runs under a Windows operating system and not in ‘real time’. 

Background 

Objectives 

Tasks 

1 
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     Using Connection Points                                         Exercise 3 
A Connection Point, or ‘goto’ instruction, is often used to create an infinite loop - to repeat a  
set of instructions over and over again (a better way to do this is to use a ‘Loop’ instruction).  
The advantage of a Connection Point is that it can be used to jump out of a loop to a certain  
location in the program. The idea of pulse-width modulation (PWM) is introduced as a means  
of controlling LED brightness. 

 
 
 • Flowcode Wiki - Connection point icon properties. 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks.  
 • Section 4 -  Flowcode First Project. Adding digital outputs - Light the LED. 

 
 
 • Use Connection Points to introduce unconditional branching in a program. 
 • Introduce PWM as a means of controlling the brightness of LEDs. 
 • Create an infinite loop. 
 • Manipulate logic output levels. 
 • Use LEDs to display an output. 

 
 
Write a program to see if you can: 

a)  Use Delay, Output and Connection Point icons to light the even and odd LEDs of an array  
alternately on and off. Use a 300ms interval between, in an infinite loop. 

         (Test the program at first ‘step-by-step’ and then continuously in the Flowcode simulator). 
b) Use Delay, Output and Connection Point icons to flash the high nibble and low nibble LEDs  
      alternately on and off, with a 300ms interval between, in an infinite loop. 
c)  use Delay and Output icons to flash all the LEDs of the array on and off with a 500ms interval  
      in between, in an infinite loop. 
d)  Modify the program by changing the ‘on’ and ‘off’ times in such a way that the total  
     (‘on’ + ‘off’) time is unchanged, e.g. on for 12ms and off for 8ms. What is the difference?  
(Download programs to the microcontroller and test them). 

 
TIP: Make the last delays very short and make the on and off times asymmetrical, 
       (e.g. on for 8ms and off for 12ms). 

This is a software PWM generator. When you run it, the intensity of the LEDs is lower.  
They flash on and off too fast for our eyes to observe. Instead, we see the intensity change.  

 
Write a program that: 

a) Lights LEDs on the four most-significant bits (MSB), of an array and keeps them on. 
b)  Dims the intensity of the LEDs on the four least-significant bits (LSB), compared  
      to the four MSB LEDs, using PWM. 
c)   Use an oscilloscope to examine the signal controlling one of the four LSB LEDs. 

 
TIP: The MSB is the left-most bit and the LSB is the righ-most bit. 

Background 

Objectives 

Tasks 

1 

2 
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     Performing Calculations                                          Exercise 4 
 
Modern microcontrollers, like the PIC MCU or Arduino, are able to do simple mathematical tasks 
with 8-bit numbers at very high speed. As the calculations get more complex or the numbers rise 
above an 8-bit value, then the execution time lengthens dramatically. Flowcode allows complex 
calculations using up to 16-bit numbers and takes care of all the complexities. However, these may 
slow down execution of the program.  

  
 
 • Variables - Example 1. Adding digital inputs - Where's the fire? 
 • Flowcode Wiki - Creating variables. 
 • Digital inputs - Example 1. Adding digital inputs - Where's the fire? 
 • Flowcode Wiki - Calculation icon properties. 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 

 
 
 • Create and use a variable. 
 • Configure a calculation icon to perform arithmetic and logic calculations. 
 • Create and manipulate variables. 
 • Perform calculations. 
 • Use LEDs with current limiting resistors. 

 
 
Create a flowchart that: 

a) uses a variable called ‘counter’ containing an initial value of ‘1’. 
b) displays the value stored in the variable ‘counter’ on LEDs. 

               (simulate the program to test that it works). 
Modify your program by: 

c) adding a Calculation icon to double the value stored in the variable ‘counter’; 
d) displaying this new value on LEDs. 
e) using an infinite loop to repeat these steps continuously with a 300ms delay between them. 

What do you see? (This is called a ‘running light’). 
f) replacing the 'multiply by 2' with 'counter = counter + 1'. What do you see now?  
           (You just programmed a binary counter). 

Modify your program to display the result of the following calculations on the LEDs of port B: 
a) 45 + 52; 
b) 45 AND 52; 
c) 45 OR 52;  
d) NOT 45; 
e) (1+3)*(6/2); 
f) VAR2 = VAR1 * 3 (where variable ‘VAR1’ stores the number 18). 
          (On paper, check if the results are correct).   

Background 

Objectives 

Tasks 

1 

2 
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     Using Loops                                                                Exercise 5 
Repeating a set of instructions, for an exact number of times, WHILE or UNTIL  
a condition is met is one of the most powerful programming operations.  
TIP: The slow simulation or 'Step Over' function in the  
Flowcode simulator is useful to debug complex programs.    

  
 
 • Flowcode Wiki - Loop icon properties. 
 • Flowcode Wiki - Connection point icon properties. 
 • Flowcode Wiki - Creating variables. 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 
 • Section 4 -  Flowcode First Project. Adding digital outputs - Light the LED. 

 
 
 • Create and use a ‘running light’ program, using the ‘multiply-by-two’ method. 
 • Create and use a ‘running light’ program, using the ‘shift-right’ method. 
 • Create and populate an array. 
 • Create a conditional loop. 

 
 
Write a program to: 

a) make an 8-bit binary counter, using a Loop icon, to count UP from 0 to 255, then reset and  
     repeat the count (display the counter value on the LEDs of port B). 

Modify your program to: 
b)  make the counter count UP from 0 to 255 and then count back DOWN to 0. 

TIP: Use two loops inside an infinite loop so that the process repeats indefinitely. 
(Download the program to the microcontroller and test it at full speed). 

 
Do you know KITT From Knight Rider or the Cylon robots from Battlestar Galactica? 
Write a program to make a simple ‘running light’ that runs from port B, bit 0 to port B bit 7 and 
then back to port B bit 0, repeatedly. 

a)  Try using the ‘multiply-by-two’ method. 
b)  Try using the ‘shift right’ method. 

Modify your program to create a 16-bit running light, using the LEDs from port A and B. 
TIP: Use only loops, no decisions. 

(Download the program to the microcontroller and test it). 

 
Create a flowchart that contains an array of four variables, called ‘Matrix[x]’ which stores  
the following values:    Matrix[0] =129    Matrix[1] =66     Matrix[2] =36    Matrix[3] =24 
(Display the outputs on the LEDs of port B). 

a) Use two ‘do-while’ loops to create an infinite sequence:  
Matrix[0]-Matrix[1]-Matrix[2]-Matrix[3]-Matrix[2]-Matrix[1]-Matrix[0]-Matrix[1]-..... ;  

b) Refer to the four variables as ‘Matrix[x]’ where ‘x’ is a separate variable, known as the index 
of the array. 

(Download the program to the microcontroller and test it). 

Background 

Objectives 

Tasks 

1 

2 

3 
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     Inputting Data                                                            Exercise 6 
 
Adding digital inputs to a microcontroller circuit is quite easy but is a big step forward. This allows 
external signals to influence how the program reacts.  

  
 
 • Section 1 - Introduction to microcontrollers.  
 • Section 2 - Using E-blocks.  
 • Section 4 - Flowcode First Project. Adding digital outputs - Light the LED. 

 
 
 • Input data from switches. 
 • Use loops to create LED sequences. 
 • Configure an input icon. 

 
 
Write a program to show the status of the switches connected to a chosen port, on the LEDs  
connected to a different port. eg. when a switch is pressed connected to port A, the corresponding 
LED on port B lights. 
  
Modify the program so that: 

a) the LED stays lit for 2s.  
b) when switch ‘0’ is pressed, LED 1 is lit. 
b) when switch ‘1’ is pressed, LED 2 is lit and so on. 
c) when switch ‘7’ is pressed, nothing happens. 
Explore as many combinations as you can. 

(Download programs to the microcontroller and test them). 

 
Write a program to create a counter that: 

a) contains two loops. 
b) counts up when switch ‘0’ is pressed. 
c) counts down when switch ‘1’ is pressed. 
d) displays the count on the LED array of a suitable port. 

(Download programs to the microcontroller and test them). 

 
Write a ‘running light’ program that: 

a) contains two loops. 
b) causes the LEDs to ‘run’ left when switch ‘0’ is pressed. 
c) causes the LEDs to ‘run’ right when switch ‘1’ is pressed. 
d) displays the count on the LED array of a suitable port. 

(Download programs to the microcontroller and test them). 

Background 

Objectives 

Tasks 

1 

2 
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     Making Decisions                                                      Exercise 7 
Earlier programs included simple decision-making, using loops and connection points. Now we 
look in detail at the Decision icon, widely known as the ‘if…then…else’ structure, probably the 
most widely used command line in any program.  

  
 
 • Flowcode Wiki - Decision icon properties. 
 • Flowcode Wiki - Connection point icon properties. 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 

 
 
 • Configure Decision icons and hence add conditional branching to a program. 
 • Control the frequency at which LEDs flash. 
 • Use LEDs to display output logic levels. 
 • Use temporary memory. 

 
 
Write a program that uses switches to produce a reversed sequence on the LEDs. 

a) when switch ‘0’ is pressed, LED 7 lights up. 
b) when switch ‘1’ is pressed, LED 6 lights up. 

and so on… 

 
Write a program that creates an 8-bit counter, counting from ‘0’ to ‘255’ and then  
back to ‘0’ repeatedly. 

a) Use Decision icons instead of Loop icons. 
b) Use two switches connected to a chosen port, bits 0 and 1. 
c) Count up when switch ‘0’ is pressed. 
d) Count down when switch ‘1’ is pressed. 
e) Display the current count on the LEDs connected to a suitable port. 

(Download the program to the microcontroller and test it). 

 
Write a program that counts from 0 to a value stored in a variable called ‘count’ when switch ‘0’ is 
pressed and then waits until switch ‘1’ is pressed before counting down to 0. 

a) Use two switches connected to a chosen port, bits 0 and 1. 
b) Use a different port for the LED array to display the current value of the count. 

(Download the program to the microcontroller and test it). 

 
Write a program that makes eight LEDs flash on and off at a frequency of 1Hz,  
i.e. taking one second for an ‘on-and-off’ cycle. Use two switches connected to a suitable port, bits 
0 and 1. 

a) The LEDs should flash faster if switch ‘0’ is pressed. 
b) The LEDs should flash more slowly if switch ‘1’ is pressed. 

(Download the program to the microcontroller and test it). 

Background 

Objectives 

Tasks 
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     Making Decisions                                                      Exercise 7 
 
Write a program that makes all eight LEDs in an array light when a switch is pressed the first time 
and all go off when it is pressed again. 

(Download the program to the microcontroller and test it). 

 
A car has two interior lights. One is in the front of the car and one is in the rear.  
Write a program to simulate this scenario using LEDs and five switches to control them. 

a) Use switches 0, 1, 2, 3 to represent doors being open or closed. 
b) Use switch 4 to represent the boot (trunk) being open or closed. 
c) Light both LEDs when any door opens. 
d) Light only the ‘rear’ LED when the boot (trunk) is opened. 

(Download the program to the microcontroller and test it). 

TIP: Assume that the switches are closed when the doors are open.  
 This may be easier to simulate with ‘push-to-make’ switches. 
 

 
A car’s steering wheel has switches on it that control  the external lights. Write a program to  
simulate the control of the lights. 

a) Use a switch to control the left direction-indicator (choose a relevant LED), which flashes on 
for 250ms and then off for 250ms repeatedly until the switch is released. 

b) Use another switch to control the right direction-indicator (choose a relevant LED), in the 
same way. 

c) Use two LEDs as brake lights controlled by a switch which light up for as long as it’s pressed. 
d) Create headlights which light when a switch is pressed and stay on until it is pressed again. 
e) Finish off with a pair of foglights in the same way. 
 

TIP: Don’t attempt to write this program all at once. Divide it into subsections and solve each  
separately before putting them all together.  
To make it easier, use the labelling feature of Flowcode to label switches and LEDs.  

 

 
Six sheep are allowed to wander between two fields.  
There are two sensors between the fields. Write a program  
that counts and displays the number of sheep in each  
field. Simulate this scenario using two switches to  
represent the sensors. 

a) Show the results in binary form on the LED array  
(use four LEDs for the west field and four for the east field). 

a) Use two switches to represents the sensors.  
 

TIP: Assume that each sheep is longer than the gap between the sensors.  
Think about the various scenarios that could happen. A sheep might trigger a sensor and 
then back out. Can a sheep trigger both sensors and then back out? When does a sheep 
count as being in the east field?  

 

5 

6 

7 
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     Programming LCDs                                                   Exercise 8 
Using LEDs to display outputs can be limiting. 
The LCD is an alternative way to display data, both letters and numbers, for ‘non binary’ humans.  

  
 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 
 • Example 3. The LCD display - Posting messages  

 
 
 • Create, populate and manipulate string variables. 
 • Control the display of text and numbers on an LCD. 
 • Use an LCD as an output device for the microcontroller. 
 • Configure a Component macro for the LCD. 

 
 
Write a program that displays the text “Hello World” in the centre of the bottom line of the LCD. 

Write a program that shows an increasing count (decimal) on the LCD screen. 
Modify the program so that it counts up when a switch is pressed and counts down when a  
different switch is pressed (use Loops or Decisions). 

Write a program to show the status of the switches attached to the first port. Every time  
a switch is pressed, the corresponding LED of the second port lights up and the value of the  
decimal equivalent is displayed on the LCD. 

Write a program to show the status of the switches attached to the first port on the LEDs of the 
second port and on the top line of the LCD and then: 

a) multiply this binary number by 100. 
b) display the result on the bottom line of the LCD, with “[x 100 = ]” displayed in front of it. 

Write a program that scrolls the lines of text given below, one line at a time. Initially, the text is 
centred on the bottom line of the display for 2s. Then it moves up to be centred on the top line for 
2s, to be replaced on the bottom line by the next line of text, and so on. 

Text: 
“There are only” 
”10 kinds” 
”of people” 
“Those who” 
“understand” 
“BINARY” 
“and those who” 
“DON’T.” 

(Enclose the program in an infinite loop and test on the LCD). 

Background 

Objectives 

Tasks 
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     Using the Keypad                                                      Exercise 9 
A numeric keypad is used in many electronic devices, and in some (eg. mobile phone), it is used as 
a numeric keypad and also as a way to type text instead of numbers.  There are twelve buttons on 
the keypad, yet the keypad is connected to the microcontroller by only eight lines. This problem is 
solved by using multiplexing.  

  
 
 • LCD - Exercise 8 - Programming LCDs. 
 • Flowcode Wiki - String manipulation functions. 
 • Section 1 - Introduction to microcontrollers. 
 • Section 2 - Using E-blocks. 

 
 
 • Input text and numbers from a keypad and display messages on the LCD. 
 • Use ASCII code to transmit this data. 
 • Use multiplexed inputs. 
 • Configure a Component macro for the keypad. 

 
 

Display numbers that are pressed on the keypad on the LCD. 
a) Display one number one at a time for as long as the button on the keypad is pressed.  
b) Can you re-write this program without using the Keypad Component macro? 
c) Extend this program to display numbers that are pressed on the keypad one after  
      another on the top row of the LCD. 

See if you can refine the program to: 
d) clear the display when ‘#’ is pressed. 
e) display a maximum of fifteen characters and display a warning on the bottom row of  
      the LCD when this maximum is exceeded. 

Write a program to: 
a) add together two numbers les than ‘9999’ entered via the keypad. 
b) Display the two numbers, the ‘+’ and ‘=‘ and the resulting sum on the top row of the LCD. 
c) Display a warning on the bottom row when ‘9999’ is exceeded. 

Write a program for a simple guessing game, where: 
a) a player needs to guess a number between ‘0’ and ‘9’. 
b) the secret number is pre-programmed into the microcontroller. 
c) the LCD displays, on the top row, the latest guess entered via the keypad. 
d) the LCD displays a message, on the bottom row, indicating whether the guess is too high or 

too low. 
Extend this program so that the secret number is in the range ‘0’ to ‘255’. 
Extend the program again so that the secret number is in the range ‘0’ to ‘9999’. 

Write a program to use the keypad, as on a mobile phone, to input text to the microcontroller. 
a) Use ASCII code to transmit the data. 
b) Use the character ‘*’ for a space. 
c) Clear the display when ‘#’ is pressed. 
d) Display a message on the bottom row when the text has more than ten characters. 

Background 

Objectives 

Tasks 
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     Analogue Inputs and the EEPROM                      Exercise 10 
The 16F18877 PIC MCU accepts 35 separate analogue inputs. Newer devices may have even more. 
An analogue signal on one of these inputs can be translated into a 10-bit digital binary number. 
We can choose to use only the eight most-significant-bits of this 10-bit number or to use the full  
10-bit number. Be aware that working with 10-bit numbers in an 8-bit microcontroller like the PIC 
MCU, needs careful program writing. 

  
 
 • LCD - Exercise 8 - Programming LCDs 
 • Flowcode Wiki - String manipulation functions 
 • Section 1 - Introduction to microcontrollers 
 • Section 2 - Using E-blocks 

 
 
 • Create data loggers, using 8-bit and 10-bit data from the ADC. 
 • Configure an analogue input. 
 • Enter data via switches. 
 • Enter information from light and temperature sensors. 
 • Configure and use the EEPROM. 
 • Scroll through EEPROM data. 
 • Display text and numerical data on the LCD. 
 • Use the E-blocks prototype board. 

 
 
Write a program to display an 8-bit number, equivalent to the analogue input voltage from the light 
sensor on the Sensor board. Try connecting a voltmeter to measure the analogue input voltage.  
(Save the following programs and download them to the microcontroller for testing).  

Modify the program from Task 1 to display data from the ‘pot’ on the Sensor board. 
Try to convert the ADC 8-bit output into a voltage reading between 0 and 5V, making it as accurate 
as the 8-bit mode allows. Use a voltmeter to measure the analogue input voltage. 

 
Modify program 2 to display, on the LCD, a 10-bit number equivalent to the analogue input voltage 
from the ‘pot’ on the Sensor board. Use a voltmeter to measure the analogue input voltage. 

Try to convert the ADC 10-bit output into a voltage reading between 0 and 5V, making it as 
accurate as the 10-bit mode allows. Use a voltmeter to measure the analogue input voltage. 

Write a program to monitor the lighting in a room over a 24 hour period: 
 • using the analogue signal from the light sensor on the Sensor board 
 • storing light measurements on the EEPROM. 
 • sampling at the highest rate possible, given that the PIC MCU has 256 bytes of EEPROM 

memory on board. 
 • and displaying each sample with its sample number, on the LCD. 
 • by scrolling forwards through the samples by pressing switch ‘0’ or scrolling backwards by 

pressing switch ‘1’. 
 

TIP: Increase sampling rate so that you don’t have to spend 24 hours in testing. 

Background 

Objectives 

Tasks 
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     Using Software Macros                                         Exercise 11 
 
In code-based programming languages, like C and BASIC, a software macro would be called a 
subroutine or function or procedure. As programs get bigger, they use certain combinations of 
instructions over and over again. These programs become harder to understand and read. 
Routines that are re-used can be put into a software macro, which can be called whenever it is 
needed in the main program. Making use of these software macros lightens up the main program 
and makes it much easier to read.  

  
 

 • Flowcode Wiki - Software macro icon properties 
 • Section 2 - Using E-blocks 

 
 

 • Use software macros to simplify the structure of a program. 
 • Create software macros. 
 • Use closed loop control. 
 • Use PWM to control the brightness of LEDs. 

 
 
 
Write a program that selects and runs one of three different programs by using two switches. 
 

a) switch ‘0’ selects one of three programs (which you developed earlier). 
 • ‘X’: an 8-bit binary up-counter, displayed on the LEDs.  
 • ‘Y’: an 8-bit binary down-counter, displayed on the LEDs.  
 • ‘Z’: an 8-bit bidirectional ‘running light’, displayed on the LEDs. 

 
b) the LCD displays a text message identifying the selected program. 
c) switch ‘1’ activates the chosen program when pressed. 
d) the three programs are placed in software macros. 

 
Modify program 1 so that: 

e) If switch ‘0’ is pressed while one of the three software is running, execution stops 
immediately and focus returns to the main loop and waits for a new selection. 

 
Modify program 1 again so that: 

f) if switch ‘0’ is pressed while one of the three software  is running, execution stops and 
returns to the main loop, as before, but it stores the value displayed on the LEDs. 

g) when the next selection is made, that macro starts the LEDs from where the previous 
one left off, making the transition between them smoother. 

 
(Download programs to the microcontroller and test them). 

Background 

Objectives 

Tasks 

1 
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     Using External Interrupts                                      Exercise 12 
In earlier exercises, the microcontroller did not necessarily react to inputs straight away because it 
was busy doing something else. The external interrupt features of microcontrollers solve this 
problem. On a 16F18877, the external interrupts are on pin ‘RB0’ - a single pin interrupt and on 
port B as an ‘interrupt on change (IOC)’. If these interrupts are initialized correctly, then a change 
on port B can cause the program to stop execution immediately and switch to executing the 
appropriate interrupt macro. We then have what is called a ‘real time’ execution.  

  
 • Section 2 - Using E-blocks. 
 • Flowcode Wiki. 

 
 
 • Create and use single-pin interrupts. 
 • Create and use interrupt-on-change (IOC) interrupts. 
 • Use real time operation of a microcontroller. 

 
 
Write a program to time how many seconds have passed since a program was reset and displays 
the result on an LCD. Use a variable called count whose value is displayed on the LEDs (don’t use 
an interrupt). Use a 1s delay. A rising edge on pin RB0 should call a macro that adds one to count.  
 
Re-design this program using an interrupt (single-pin) on RB0. 
Now re-design it using both kinds of external interrupt so that: 

a) triggering the single-pin interrupt increments ‘count’ (count = count + 1) 
b) triggering the IOC interrupt decrements ‘count’ (count = count - 1) 

Write a program to make an electronic dice that: 
a) counts from 1 to 12. 
b) display the result on the LCD. 
c) starts ‘rolling’ when switch 0 is pressed. 
d) stops ‘rolling’ when switch 0 is pressed again. 

 TIP: The LCD should display numbers from 1 to 12, one after the other, over and over again 
rapidly, at 20 ms intervals (much too fast to see with a human eye). 

Modify this program so that: 
e) the dice keeps ‘rolling’ as long as switch 0 is held down. 
f) stops ‘rolling’ when the switch is released. 
g) at that point displays the number on the LCD. 

Write a program to make a reaction timer that : 
a) lights all LEDs initially. 
b) keeps them lit for around 6s. 
c) switches them off and starts a timer. 
d) stops the timer when the player presses switch 0. 
e) then displays the resulting ‘reaction time’ on the LCD. 

(Use a variable that is incremented every 10ms.) 
 
Modify program 3 to limit the time allowed to the size of the used variable and displays a message 
on the LCD when this size is exceeded. (Include a trap to prevent cheating by simply holding down 
switch 0 continuously). 

Background 
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     Using Timer Interrupts                                          Exercise 13 
The other type of interrupt function in Flowcode is the timer interrupt. These allow you to perform 
software tasks at precisely predetermined time intervals - a really useful feature when developing 
time critical applications and clocks.  

  
 
 • Flowcode Wiki - What is a 7-segment display? 
 • Section 2 - Using E-blocks. 

 
 
 • Create and use timer interrupt. 
 • Use the prescaler to create accurate time intervals. 
 • Trigger the timer using the crystal or an external event. 

Timer arithmetic: 
The 16F18877 has several timers, but we look at only two: TMR0 (Timer 0) and TMR1 (Timer 0). 
 • TMR0 can be triggered by the crystal or by a transition on the T0CKI pin RA4.  
 • The internal clock has a frequency of crystal clock frequency/4, i.e. 19,660,800/4 = 

4,915,200Hz.  
 • The TMR0 prescaler can be set from 1:2 to 1:256. For this exercise, set it to 1:256, so that every 

256 clock pulses cause the TMR0 to increase by 1. This happens at a frequency of 
4.915.200/256 = 19.200Hz. 

 • Every time this 8-bit timer ‘overflows’ (reaches 256), it generates an interrupt. This happens 
with a frequency of 19.200/256 = 75Hz, so that the main program is stopped 75 times per sec-
ond and so the timer interrupt macro is executed 75 times per second.  

 • Instead of using the crystal, this timer can also be ‘clocked’ by an external event, as when 
measuring motor speed etc. 

 • TMR1 can be triggered by the crystal oscillator or by a transition on the T1CKI pin RC0.  
(Its operation is similar to that of TMR0, except that it uses different prescaler values).  

 •  
Write a program to produce a precise ‘seconds’ timer that displays the result on the LCD and starts 
when the microcontroller is reset. Use a 1s delay. Don’t use a timer interrupt. 

(Download this program to the microcontroller and test it using your watch).  
Rewrite the program using a timer interrupt. 

Write a program to create a basketball timer that starts when switch 0 is pressed and displays the 
time elapsed on the LCD. Make the LEDs flash on and off when 30s has elapsed (the time allowed 
for the team with the ball to make a goal attempt). 

TIP: Use a single-bit interrupt on pin RB0 to start the timing.) 

Write a program to produce a precise clock that displays the time elapsed since the last reset, in 
hours, minutes and seconds on the LCD (test with a watch). 
Modify this program so that: 

a) switch ‘0’ stops the clock when pressed the first time. 
b) switches ‘1’, ‘2’ and ‘3’ can be used to change the displayed time to the actual time. 
c) switch ‘0’ restarts the clock when pressed a second time. 

Write a program to produce a timer that counts down from 01:00:00 to 00:00:00 in seconds and 
then lights all the LEDs. 

(Download to the microcontroller and test it with your watch). 

Background 
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     Additional Challenges                                               Section 6 
 
Develop a dimmer for all the LEDs that reacts to measured light intensity. 

 • The light sensor monitors the light intensity in a room. When this intensity drops, a control circuit 
sends more power to the lights in that room and vice versa when the intensity increases. 

 • Use the LEDs to simulate the dimmed lights. This is done by programming a software PWM output to 
all LEDs on port B. When the PWM ‘on’ time increases, the LEDs get brighter, etc. 

 • Put this program in a timer interrupt macro. 
 • The main loop monitors the analogue input from the light sensor on the sensor board, on port C. 

When the light sensor detects less light, the LEDs need to shine brighter. The opposite should happen 
with the LEDs when the light level, measured by the light sensor, intensifies. 

 • The period of the PWM signal stays a constant 20ms at all times, set using a timer interrupt. 
 • Download this program to the microcontroller and test it. If you have a 2 channel oscilloscope, 

measure the analogue input of the light sensor on one and the PWM output to one of the LEDs on 
the other. 

 • Using a similar approach, develop a temperature controller for an incubator. The BL0129 Grove 
Sensor board can be used with the Grove Temperature sensor module. Use the LEDs to simulate the 
action of a heater.  

 
Three judges vote on variety acts in a X-factor-like game show. When two or more judges vote ‘Yes’, the act 
progresses to the next round. 

 • Design a program to combine the judges’ votes into a pass/fail verdict. 
 • Create two LED light sequences, one to indicate pass and the other fail. 

 
Design an automatic watering system for a sealed terrarium (glass plant container). Use the Grove 
Temperature and Humidity sensor module to sense when the terrarium needs watering.  

 • The output device is a motor-driven pump that runs for a set period of time once triggered.  
There should be a ‘rest’ period after watering before the system can operate again. 

 
Create a combination lock, using the BL0138 Keypad board to input a four-digit ‘PIN’.  

 • Add a feature that ‘locks out’ a user after three unsuccessful attempts. 
 • Modify it to prevent further access to the system for a period of time such as ten seconds. 
 • Use the LCD display to show the numbers selected on the keypad and the number of attempts made. 

 
Develop a proximity switch for a security light using the Grove Ultrasonic Ranger sensor module. The 
system should switch on four lights (12V lamps) when a person approaches within one metre of the sensor 
and so makes use of the BL083 Relay board. 

 
Use the Grove Infrared Receiver sensor module to time the swing of a pendulum without impeding it. 

 
Design a system to drive the DC motor (and sensor) on the Actuators training panel at a steady speed. 

 • Add a feature to modify this set speed. 

Design a system to drive the stepper motor on the Actuators training panel so that it rotates, in 150 steps, 
through one complete circle and then reverses back to its initial position in the same manner. 
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     Appendix 1:    Arduino 

                  Adjustments 
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     Arduino Adjustments                                                                                                                         Appendix 1  

ARDUINO: SECTION A 
 
BL0055 Arduino Shield 
 

 • The board has three ports, labelled A0-A5, D0-D7 and D8-D13. 
 • Port D0-D7 offers full 8-bit functionality. 
 • Port A0-A5 and D8-D13 has 6-bit functionality. 
 • It can be powered from an external power supply, delivering 7.5V to 9V or from a USB supply.  
 • If the Reset switch is pressed, the program stored in the Arduino will restart. 
 • The board is USB programmable via a programming chip. This takes care of communication 

between Flowcode and the Arduino device. 
 • The Arduino executes one instruction for every clock pulse it receives.  
 • (Note - a single instruction is NOT the same as a single Flowcode symbol, which is compiled into C 

and then into Assembly and probably results in a number of instructions). 
 • This device uses a 16MHz crystal.  
 • The board will detect whether External power supply or USB power supply should be used.  
 • Use of the AVR ISP tool from Microchip via the ICSP header. 
 • Usually supplied with an Arduino Uno device. 
 • Provides power to the downstream E-blocks boards via the port connectors. 
 • Contains the Matrix Ghost chip which allows for real time in-circuit debugging and pin monitoring 

when combined with Flowcode. 
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     Arduino Adjustments                                                                                                                         Appendix 1  

ARDUINO: SECTION B 

Selecting Arduino in Flowcode 

On opening Flowcode, you are presented with the ‘Welcome’ screen. Click on New Project. 

Select Arduino Uno R3 PDIP  from the Free targets list. Click “New <Arduino...” button above 

 

 
 
 
 
 
 
 
 
 
This brings up the standard Flowcode environment. A flowchart can now be developed into a 
program that can be tested within the Flowcode simulation mode, or saved and compiled to the 
Arduino board. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Follow the Examples and Exercises, taking Port changes into consideration where required. 
E.g. Above is how Flowcode First Program (Page 42) would look to an Arduino user.  
Here, Arduino users are using PORTC instead of PORTA. 
        (PORTC on the Arduino ’Maps’ to PORTA of the Combo board) 
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     Arduino Adjustments                                                                                                                         Appendix  1 

ARDUINO: SECTION C 

 
E-blocks2: 
 
Eblocks2 uses the ‘Click’ boards for its SPI connections. Using the BL0106 ‘Click’ board E-block, you can 
put the board into the (D8-D13) port as shown in the picture below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
E-blocks1: 
 
Using with the SPI E-block (EB013)  
 
On the SPI E-block move the “CHIP EN SELECTION” jumper to setting “2” and connect DAC_EN and 
NVM_EN to the centre pins of the “PORT A MODE SELECT” jumper (J14) of the EB083 Combo Board: 
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     Arduino Adjustments                                                                                                                         Appendix  1 

ARDUINO: SECTION D 
 
Setting up the hardware: 

This diagram shows you how to set up the E-blocks hardware with Arduino. Plug your Arduino into 
the BL0055 board as shown, then the combo board into the ports labelled (A0-A5) and (D0-D7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Despite having two hardware port connections between the EB0114 Development board 
and the BL0055 Shield, the Arduino Uno can only provide 6 general purpose I/O connections on 
port C, (A0-A5). Therefore, LEDs ‘6’ and ‘7’ and switches ‘6’ and ‘7’ on Port 1 of the Development 
board, cannot be used with the Arduino Uno. 
 
In order to program the Arduino Uno board directly from within Flowcode, you must ensure that 
the appropriate drivers are installed. We recommend you visit the Arduino site and download 
the latest drivers from there. 
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     Appendix 2:    E-blocks1 

                  Adjustments 
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     E-Blocks1 Adjustments                                                                                                                    Appendix 2  

 

E-BLOCKS1: SECTION A 
 
EB006 Multiprogrammer 

 • The board has five ports, labelled ‘A’ to ‘E ‘. 
 • Ports ‘B’, ‘C’ and ‘D’ offer full 8-bit functionality. 
 • Port ‘A’ has 6-bit functionality, (8-bit if the internal oscillator is 

selected). 
 • Port ‘E’ has 3-bit functionality. 
 • It can be powered from an external power supply, delivering 

7.5V to 9V or from a USB supply.  
 • As pointed out elsewhere,  no 5V connection is provided in 

the D-type connector. This must be provided by an additional 
connection to ‘downstream’ boards, using the screw 
terminals on the Multiprogrammer board. The ground 
connection is provided through pin 9 of the D-type connector. 

 
 

IMPORTANT - DO NOT connect the 14V screw terminal to a 5V ‘downstream’ screw terminal.  

 

 • If the Reset switch is pressed, the program stored in the PIC MCU will restart. 
 • There is a 1:1 mapping between pins on the D-type connector and those on the ports, (e.g. Pin1 

is connected to PB0, Pin 2 to PB1 etc.) 
 • The board is USB programmable via a programming chip. This takes care of communication 

between Flowcode’ and the PIC MCU. 
 • The PIC MCU executes one instruction for every four clock pulses it receives.  
 • (Note - a single instruction is NOT the same as a single Flowcode symbol, which is compiled into 

C and then into Assembly and probably results in a number of instructions.) 
 • This course uses a 19,660,800Hz crystal. The advantages of this frequency include: 

 • standard Baud rate (19200) is obtainable by dividing it by 1024; 
 • it can be further divided by 256 to give 75 Hz. 

 • Jumpers allow the user to select a number of options:  
 • external power supply or USB power supply;  
 • where the PIC MCU uses an internal oscillator, all eight bits of port A can be used for I/O 
operation; 

 • use of an professional ICD2 (In-Circuit Debugger) tool from Microchip. 
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E-BLOCKS1: SECTION B 
 
EB083 Combo Board 

The board combines together on one compact board the 
functionality found on a number of individual E-blocks boards: 

 • EB004 LED board (x2) 
 • EB005 LCD board; 
 • EB007 Switch board (x2) 
 • EB008 Quad 7-segment Display board. 

 • For this course, the D-type connectors attach to female 
connectors on ports A and B of the Multiprogrammer.  

 • The board provides a set of eight switches and eight LEDs for 
port A and the same for port B. 

 • With J14 links in the ‘Digital’ position, port A is routed to its push switches (SA0 to SA7), to LEDs 
(LA0 to LA7) and to the quad 7-segment display.  

 • With J14 links in the ‘Analogue’ position, port A is switched to the analogue sensor section of 
the board, so that pin RA0 is connected to the on-board light sensor and pin RA1 is connected 
to the potentiometer to give a variable output voltage, (simulating the action of an analogue 
sensing subsystem).  

 • (With these links in this position, the on-board switches and LEDs LA0 and LA1 will not 
operate.) 

 • Port B I/O pins are routed to its push switches (SB0 to SB7), to the LEDs (LB0 to LB7), to the 
quad 7-segment displays and to the LCD display. 

 • The quad 7-segment display is turned on by switch S3. It is connected to both port A and B. 
 • Port B is used to control the LED segments and the decimal point). 
 • Port A, bits 0 to 3, select which display is activated.  

 • The LCD is a 16 character x 2 lines module, turned on by switch S5. Normally a complex device 
to program, Flowcode takes care of the complexities, unseen by the user. 
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E-BLOCKS1: SECTION C 
 
Setting up the hardware: 
This diagram shows you how to set up the E-blocks hardware.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How E-blocks connect to each other 

E-blocks are built on a bus-based concept. Each E-block D-type connector uses nine pins, allowing 
transfer of eight bits of data and ‘ground’.  
In the E-blocks system, some E-blocks are ‘upstream’ and some are ‘downstream’. ‘Upstream’ 
devices have ‘intelligence’, are usually programmable and control the flow of information to 
‘downstream’ devices. In the E-blocks system, ‘upstream’ devices connect using 9-way D-type 
sockets, whereas ‘downstream’ devices connect using 9-way D-type plugs.  
 
The diagrams show how the pins are numbered on the plugs and sockets. On 
both plugs and sockets, bit 0 is delivered on pin 1, bit 7 on pin 8 and pin 9 is 
designated 0V.  
 
Where two ‘upstream’ devices need to be connected together a gender 
changer or ‘Insulation Displacement Connector’ (IDC) cable with two IDC 
sockets on can be used.  
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E-BLOCKS1: SECTION D 
 
Understanding the patch system 

Most 'downstream' E-blocks include a patch system that gives you flexibility in the connections 
that are made between ‘upstream’ and ‘downstream’ E-blocks. The default connections are 
optimized for ease of connection between PIC MCU ‘upstream’ and E-Blocks ‘downstream’ boards. 
Other microcontrollers may require different connections, facilitated by the patch system. 
The patch system has two parts:  
 • jumper links that select between default connections and the patch system, 
 • the patch connectors themselves.  

The photographs show an EB090 sensors motherboard with and without sensors attached to it. 
 
 
 

 

 

 
 
 

The next two diagrams show how to use the patch system on this board. 
In the upper diagram, jumpers J12 and J13 are set to the ‘default’ position. This routes signals from 
the light sensor and ‘pot’ to pins 1 and 2 of the D-type plug, respectively. 
 
 
 
 
 
 
 
 
 
 
 
However, when using a different microcontroller, you might want the signal from the ‘pot’ to 
appear on pin 5 of the D-type plug. To achieve this, move jumpers J12 and J13 to the 'patch' 
position and add a wire from the ‘pot’ socket on ‘J11’ to pin 5 on J8, as shown in the lower 
diagram.  
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